高等数学22

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、解答题 ( 共 29 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
证明当 $x>0$ 时, $\ln \left(x+\sqrt{1+x^2}\right) < \sqrt{1+x^2} \arctan x$.



设 $y=y(x)$ 是由方程 $\mathrm{e}^{-y}-y+\int_0^x\left(\mathrm{e}^{-t^2}+1\right) \mathrm{d} t=1$ 所确定的隐函数.
(1) 证明 $y(x)$ 是单调增加函数;
(2)当 $x \rightarrow+\infty$ 时, 曲线 $y^{\prime}(x)$ 是否有水平渐近线, 若有, 求出其渐近线方程, 若没有, 说明理由.



已知函数
$$
f(x)=\int_0^{\frac{\pi}{2}} \sin 2 t \mathrm{~d} t \int_0^x \frac{u^2 \mathrm{~d} u}{\left(1+u^2 \sin ^2 t\right)^2},
$$

$F(x)=f(x)-x=\sum_{n=0}^{\infty} a_n x^n,-1 < x < 1 \text {, }$
求$a_n$的表达式



设点 $P_1\left(x_1, y_1, z_1\right)$ 是椭球面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1(a, b, c>0)$ 在第一卦限上的点, $\Sigma$ 是椭球面在点 $P_1$ 处的切平面被三个坐标面所截得的三角形区域, 取上侧. 求
$$
I=\iint_{\Sigma} x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y
$$

的最小值, 并求出此时点 $P_1$ 的坐标.



设曲面 $\Sigma$ 由直线段 $L:\left\{\begin{array}{l}x=\frac{\sqrt{2}}{2}(t-1), \\ y=\frac{\sqrt{2}}{2}(t+1), \\ z=t\end{array},(0 \leqslant t \leqslant 1)\right.$ 绕 $z$ 轴旋转一周得到, 空间区域 $\Omega$ 由 $\Sigma$ 与平面 $z=0, z=1$ 所围成, 求 $\Omega$ 的形心.



$\lim _{x \rightarrow 0^{+}}(\cos (\sqrt{x}))^{\frac{1}{x}}$.



若 $\lim _{n \rightarrow+\infty} a_n=a,\left(a>0, a_n>0\right)$, 求 $\lim _{n \rightarrow+\infty} \sqrt[n]{a_n}$.



$\lim _{x \rightarrow 0} \frac{(1+\tan x)^{\frac{1}{4}}+(1-\sin x)^{\frac{1}{4}}-2}{x^2}$.



讨论函数 $f(x, y)=\left(1+\frac{2}{x^2}\right)^{\frac{x^4}{x^2+y^2}}$ 在点 $(0,0)$ 处的累次极限和重积分存在性,若存在求其值.



设函数 $f(x)$ 在 $[a, b]$ 上可导,满足:
$$
f(a)=f(b)=0, f_{+}^{\prime}(a) \cdot f_{-}^{\prime}(b)>0 .
$$
证明: 至少存在不同的两点 $\xi, \eta \in[a, b]$ ,使得
$$
f^{\prime}(\xi)=f^{\prime}(\eta)=0 .
$$



证明: 二元函数 $f(x, y)=x^3-4 x^2+2 x y-y^2$在 $\mathbb{R}^2$ 上有唯一的极值点,且该极值点是极大值点但不是最大值点.



求三重积分 $I=\iiint_{\Omega} z \cdot \sqrt{x^2+y^2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$ ,其中 $\Omega$ 为 $y=\sqrt{2 x-x^2}$ 及平面 $z=0, z=a,(a>0)$ 和 $y=0$ 所围成的区域.



定义函数 $f(x)=\left\{\begin{array}{ll}\frac{1}{x} e^{-\frac{1}{x^2}}, x \neq 0 \\ 0 & , x=0\end{array}\right.$.
(1) 证明: $f(x)$ 在点 $x=0$ 处连续且可导.
(2) 证明: $f^{\prime}(x)$ 在 $\mathbb{R}$ 上连续.
(3) 求 $f(x)$ 的单调区间、最大值点、最小值点.



设函数项级数 $\sum_{n=2}^{\infty} \frac{x e^{-n x}}{\ln n}$.
(1) 求函数项级数的收敛区间.
(2) 设 $a>0$ ,证明: 函数项级数在 $[a,+\infty)$ 上一致收敛.



设函数 $f_1(x)$ 在区间 $[a, b]$ 上可积, $A$ 是一个给定实数,且 $f_{n+1}(x)=A+\int_a^x f_n(t) \mathrm{d} t$ ,其中 $x \in[a, b], n=1,2, \cdots$.
(1) 证明: 函数列 $\left\{f_n(x)\right\}$ 在 $[a, b]$ 上一致收敛.
(2) 记 $\left\{f_n(x)\right\}$ 极限函数为 $f(x)$ , 证明: $f(x)$ 在 $[a, b]$ 可微.



求曲线积分
$I=\int_C x \ln \left(x^2+y^2-1\right) \mathrm{d} x+y \ln \left(x^2+y^2-1\right) \mathrm{d} y .$
其中 $C$ 是被积函数定义域内从 $(2,0)$ 到 $(0,2)$ 的逐段光滑曲线.



设 $f(x)$ 为区间 $[a, b]$ 上定义的连续且黎曼可积函数,证明: $\lim _{\lambda \rightarrow+\infty} \int_a^b f(x) \sin (\lambda x) \mathrm{d} x=0$.



$\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1-\tan x}}{\sin x}$.



$\lim _{x \rightarrow 1}\left(\frac{m}{1-x^m}-\frac{n}{1-x^n}\right), m, n$ 是任意正整数.



$\lim _{n \rightarrow \infty}\left[\cos \left(\pi \sqrt{n^2+1}\right)\right]^2$.



$\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n !}}{n}$.



$\lim _{\substack{x \rightarrow+\infty \\ y \rightarrow+\infty}}\left(\frac{x y}{x^2+y^2}\right)^{x^2}$.



设 $f(x)$ 在 $x=0$ 存在二阶导数,且
$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x^3}+\frac{f(x)}{x^2}\right)=0 .
$$
求 $f^{\prime}(0), f^{\prime \prime}(0)$.



计算定积分 $\int_{-2}^{-\sqrt{2}} \frac{\mathrm{d} x}{x \cdot \sqrt{x^2-1}}$.



求三重积分 $\iiint_{\Omega} x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$ ,其中 $\Omega$ 为平面 $x+2 y+z=1, x=0, y=0, z=0$ 围成的区域.



已知 $u$ 是关于 $x, y$ 的函数,且满足:
$u=f(x, y, z, t), g(y, z, t)=0, h(z, t)=0 .$
求 $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$.



设 $f(x)$ 是 $(0,+\infty)$ 的单调增加函数,且存在极限
$\lim _{n \rightarrow \infty} a_n=+\infty, \lim _{n \rightarrow \infty} f\left(a_n\right)=A .$

证明: $\lim _{x \rightarrow+\infty} f(x)=A$.



设 $f(x)$ 在 $[a, b]$ 上连续单调增加,证明:
$$
\int_a^b x f(x) \mathrm{d} x \geq \frac{a+b}{2} \int_a^b f(x) \mathrm{d} x .
$$



证明: 函数项级数 $\sum_{n=1}^{\infty} \frac{n x}{1+n^5 x^2}$ 在 $[0,+\infty)$ 一致收敛.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。