填空题 (共 3 题 ),请把答案直接填写在答题纸上
设函数 $f(x)=\left\{\begin{array}{ll}1, & |x| \leq 1, \\ 0, & |x|>1,\end{array}\right.$ 则 $f[f(x)]=$ ( )
积分 $\int_{0}^{2} d x \int_{x}^{2} e^{-y^{2}} d y$ 的值等于
设 $\left\{\begin{array}{l}x=1+t^{2}, \\ y=\cos t,\end{array}\right.$ 则 $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=$