查看原题
设 $y=y(x)$ 是由方程 $\mathrm{e}^{-y}-y+\int_0^x\left(\mathrm{e}^{-t^2}+1\right) \mathrm{d} t=1$ 所确定的隐函数.
(1) 证明 $y(x)$ 是单调增加函数;
(2)当 $x \rightarrow+\infty$ 时, 曲线 $y^{\prime}(x)$ 是否有水平渐近线, 若有, 求出其渐近线方程, 若没有, 说明理由.
                        
不再提醒