填空题 (共 3 题 ),请把答案直接填写在答题纸上
已知双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的渐近线与圆 $x^2+y^2-4 y+3=0$ 相切, 则双曲线的 离心率为
已知椭圆 $C: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1, F_2, C$ 的下顶点为 $A$, 离心率为 $\frac{1}{2}$, 过 $F_2$ 且 垂直于 $A F_1$ 的直线与 $C$ 交于 $D, E$ 两点, $|D E|=8$, 则 $\triangle A D E$ 的周长为
已知点 $P\left(x_0, y_0\right)$ 关于 $x$ 轴的对称点在曲线 $C: y=2 \sqrt{2 x}$ 上, 且过点 $P$ 的直线 $y=x-2$ 与曲线 $C$ 相交于点 $Q$, 则 $|P Q|=$