科数网
试题 ID 4375
【所属试卷】
2023年贵州省 高考备考针对性联考(理科数学)
抛物线 $y^2=2 p x(p>0)$ 的焦点为 $F$, 直线 $l$ 过点 $F$ 且与抛物线交于点 $M, N$ (点 $N$ 在 $x$ 轴上 方), 点 $E$ 为坐标轴上 $F$ 右侧的一点, 已知 $|N F|=|E F|=3|M F|, S_{\triangle M N E}=3 \sqrt{3}$, 若点 $N$ 在双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的一条渐近线上, 则双曲线的离心率为
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
抛物线 $y^2=2 p x(p>0)$ 的焦点为 $F$, 直线 $l$ 过点 $F$ 且与抛物线交于点 $M, N$ (点 $N$ 在 $x$ 轴上 方), 点 $E$ 为坐标轴上 $F$ 右侧的一点, 已知 $|N F|=|E F|=3|M F|, S_{\triangle M N E}=3 \sqrt{3}$, 若点 $N$ 在双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的一条渐近线上, 则双曲线的离心率为
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见