已知圆 $(x-2)^2+y^2=9$ 与 $x$ 轴的交点分别为双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的顶点和 焦点, 设 $F_1, F_2$ 分别为双曲线 $C$ 的左、右焦点, $P$ 为 $C$ 右支上任意一点, 则 $\frac{\left|P F_1\right|^2}{\left|P F_2\right|^2+4}$ 的 取值范围为
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$