科数网
试题 ID 11420
【所属试卷】
张宇全国硕士研究生招生考试数学一预测卷(2021版)
已知函数
$$
f(x)=\int_0^{\frac{\pi}{2}} \sin 2 t \mathrm{~d} t \int_0^x \frac{u^2 \mathrm{~d} u}{\left(1+u^2 \sin ^2 t\right)^2},
$$
$F(x)=f(x)-x=\sum_{n=0}^{\infty} a_n x^n,-1 < x < 1 \text {, }$
求$a_n$的表达式
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知函数
$$
f(x)=\int_0^{\frac{\pi}{2}} \sin 2 t \mathrm{~d} t \int_0^x \frac{u^2 \mathrm{~d} u}{\left(1+u^2 \sin ^2 t\right)^2},
$$
$F(x)=f(x)-x=\sum_{n=0}^{\infty} a_n x^n,-1 < x < 1 \text {, }$
求$a_n$的表达式
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见