高等数学11

数学



填空题 (共 3 题 ),请把答案直接填写在答题纸上
已知 $f(x)=\left\{\begin{array}{rr}e^x, & x \geq 0, \\ 1+x^2, & x < 0,\end{array}\right.$ 则 $\int_{-1}^1 f(x) \mathrm{d} x=$

$\int_9^4 \frac{1}{1+\sqrt{x}} \mathrm{~d} x=$

求极限 $ \lim _{x \rightarrow 0}\left(\frac{\left(\mathrm{e}^x+\mathrm{e}^{2 x}+\cdots+\mathrm{e}^{n x}\right)}{n}\right)^{\frac{1}{x}} $

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。