填空题 (共 3 题 ),请把答案直接填写在答题纸上
已知常数 $a>0, b c \neq 0$, 使得 $\lim _{x \rightarrow+\infty}\left[x^a \ln \left(1+\frac{b}{x}\right)-x\right]=c$, 求 $a, b, c$.
求 $\lim _{x \rightarrow 0} \frac{\int_0^x(x-t) f(t) \mathrm{d} t}{x \int_0^x f(x-t) \mathrm{d} t}$, 其中 $f(x)$ 连续且 $f(0) \neq 0$.
设 $f(x)$ 是周期为 2 的连续函数:
(1) 证明对任意实数 $t$ ,有 $\int_t^{t+2} f(x) \mathrm{d} x=\int_0^2 f(x) \mathrm{d} x$ ;
(2) 证明 $G(x)=\int_0^x\left[2 f(t)-\int_t^{t+2} f(s) \mathrm{d} s\right] \mathrm{d} t$ 是周期为 2 的周 期函数.