高等数学06

数学



已知常数 $a>0, b c \neq 0$, 使得 $\lim _{x \rightarrow+\infty}\left[x^a \ln \left(1+\frac{b}{x}\right)-x\right]=c$, 求 $a, b, c$.


求 $\lim _{x \rightarrow 0} \frac{\int_0^x(x-t) f(t) \mathrm{d} t}{x \int_0^x f(x-t) \mathrm{d} t}$, 其中 $f(x)$ 连续且 $f(0) \neq 0$.


设 $f(x)$ 是周期为 2 的连续函数:
(1) 证明对任意实数 $t$ ,有 $\int_t^{t+2} f(x) \mathrm{d} x=\int_0^2 f(x) \mathrm{d} x$ ;
(2) 证明 $G(x)=\int_0^x\left[2 f(t)-\int_t^{t+2} f(s) \mathrm{d} s\right] \mathrm{d} t$ 是周期为 2 的周 期函数.


设 $f(x)=\int_1^x \frac{\ln t}{1+t} \mathrm{~d} t$ ,其中 $x>0$ ,求 $f(x)+f\left(\frac{1}{x}\right)$.


设 $f(x)$ 是区间 $\left[0, \frac{\pi}{4}\right]$ 上的单调、可导函数,且满足
$$
\int_0^{f(x)} f^{-1}(t) \mathrm{d} t=\int_0^x t \frac{\cos t-\sin t}{\sin t+\cos t} \mathrm{~d} t
$$
其中 $f^{-1}$ 是 $f$ 的反函数,求 $f(x)$.


设 $f(x)$ 在 $(-\infty,+\infty)$ 内满足
$$
f(x)=f(x-\pi)+\sin x ,
$$
且 $f(x)=x, x \in[0, \pi)$ ,计算 $I=\int_\pi^{3 \pi} f(x) \mathrm{d} x$.


设函数 $f(x)$ 可导,且 $f(0)=0$ ,
$$
F(x)=\int_0^x t^{n-1} f\left(x^n-t^n\right) \mathrm{d} t,
$$
求 $\lim _{x \rightarrow 0} \frac{F(x)}{x^{2 n}}$.


设函数 $f(x)$ 连续, $g(x)=\int_0^1 f(x t) \mathrm{d} t$ ,且 $\lim _{x \rightarrow 0} \frac{f(x)}{x}=A$ , $A$ 为常数. 求 $g^{\prime}(x)$ 并讨论 $g^{\prime}(x)$ 在 $x=0$ 处的连续性.


设 $f(x)$ 在 $[a, b]$ 上连续, $x \in(a, b)$ ,证明:
$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_a^x[f(t+h)-f(t)] \mathrm{d} t=f(x)-f(a) .
$$


求 $\lim _{x \rightarrow+\infty} \sqrt[3]{x} \int_x^{x+1} \frac{\sin t}{\sqrt{t+\cos t}} \mathrm{~d} t$.


设 $f(x)$ 为定义在 $(-\infty, 0) \cup(0,+\infty)$ 上的分段连续函数, 且 $\lim _{x \rightarrow 0^{-}} f(x)=-1, \lim _{x \rightarrow 0^{+}} f(x)=1$, 则 $F(x)=\int_0^x(\sin x-\sin t) f(t) \mathrm{d} t$ 在 $x=0$ 处可导的最高阶数为


$\int_{\frac{\sqrt{3}}{3}}^1 \frac{\arctan x}{x^5} \mathrm{~d} x=$


设函数 $f(x, y)$ 连续, 区域 $D$ 是由曲线 $\left(x^2+y^2\right)^2=2 x y$ 在第一象限所围成的部分, 则 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y$ 在极坐标系下先 $\theta$, 后 $r$ 的二次积分为


设两曲面 $S_1: 2 \pi x^2-2 \pi y^2+16 z^2=\pi^2, S_2: z=\arctan \frac{y}{x}$ 在第一卦限内的点 $P$ 处有公共切平面, 则此切平面的方程为


函数 $f(x)=\frac{\sqrt{1+2 x}-1}{x(x+1)(x-2)}$ 的无穷间断点为 ________ , $\lim _{x \rightarrow 0} f(x)=$


曲线 $y=\left(1+\frac{1}{x}\right)^{x-1}$ 有水平渐近线 ________ 和铅直渐近线 ________


设函数 $y(x)$ 由参数方程 $\left\{\begin{array}{l}x=t^3+3 t+1 \\ y=t^3-3 t+1\end{array}\right.$ 确定, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ ________


设 $x+\cos 2 x$ 为 $f(x)$ 的原函数, 则 $\int_0^\pi f(x) \mathrm{d} x=$ ________ , $f^{(2015)}(0)=$ ________


设 $f(x)=\int_{-1}^x \dfrac{t^2+t}{t^6+1} \mathrm{~d} t$, 则 $f(1)=$ ________ , $f^{\prime}(1)=$ ________


函数 $f(x)=\frac{x}{\tan x}, x=k \pi$ 和 $x=k \pi+\frac{\pi}{2} \quad$ ( $k$ 是整数 $)$ 是间断点, 其中无穷间 断点是 ________


$\lim _{x \rightarrow \infty}\left(\frac{x+2 a}{x-a}\right)^x=$


已知 $x=a(t-\sin t) ; y=a(1-\cos t)$; $\frac{d y}{d x}=$.


设 $\int f(x) d x=\sin 2 x+c$, 则 $f(x)=$


广义积分 $\int_2^{\infty} \frac{d x}{x^2+x-2}=$


求 $\int_{-1}^1\left(2 x+\sqrt{1-x^2}\right)^2 d x$


$\int_1^{+\infty} \frac{x^2}{x^6+1} \mathrm{~d} x=$


方程 $\arcsin x=k x$ 在 $x \in[0,1]$ 只有一个解, 那么 $k$ 的取值范围是


$\sum_{n=0}^{+\infty} \frac{n !+1}{(n+2) !}=$


非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。