高等数学07

数学



二元函数 $f(x, y)=3 x y-x^3-y^3+3$ 的所有极值的和等于


幂级数 $\sum_{n=1}^{\infty}(-1)^n \frac{1}{n 3^n} x^n$ 的收敛域为


已知 $L: \frac{x-1}{2}=\frac{y}{0}=\frac{2 z+1}{\lambda}$ 与 $\pi: x-y+z=0$ 平 行, 则常数 $\boldsymbol{\lambda}$ 的值为


设 $u=\ln \left(1+x y+y z^3\right)$ ,则 $\left.\operatorname{grad} u\right|_{(1,2,1)}=$


二次积分 $\int_1^4 \mathrm{~d} x \int_x^4 \frac{1}{x \ln y} \mathrm{~d} y$ 的值为


设曲线 $L: y=\frac{x^2}{2}(0 \leq x \leq 1)$ ,则曲线积分 $\int_L x \mathrm{~d} s$ 的 值为


设矢量 $a, b$ 满足 $|a+b|=|a-b|$, 若 $a=(1,2,3), b=(1,4, \lambda)$, 则 $\lambda=$ ?


求广义积分 $\int_0^{+\infty} x^5 e^{-x^2} d x$


若方程组 $\left\{\begin{array}{l}x=t e^{-t} \\ \int_1^{y-x} \sin ^2\left(\frac{\pi}{4} u\right) d u=t\end{array}\right.$ 可确定 $y$ 是 $x$ 的函数 $y=y(x)$, 则 $\left.\frac{d y}{d x}\right|_{t=0}=$ ?


求不定积分 $\int x^2 \arctan x d x$


曲线 $f(x)=2 x+\sqrt{x^2-2 x+3}$ 的渐近线为?


$\lim _{x \rightarrow 0} \frac{\tan (\arcsin x)-x}{x^3}=$


设 $y=y(x)$ 由 $\int_{x+1}^{x+y} \mathrm{e}^{-(t-x)^2} \mathrm{~d} t=x+1-y$ 确定, 则 $\left.\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}\right|_{x=0}=$


$\lim _{n \rightarrow \infty} \sum_{i=1}^n \frac{i\left(1+\cos \frac{2 \pi i}{n}\right)^2}{n^2+i}=$


设曲线 $L:\left\{\begin{array}{l}x^2+y^2=2 x, \\ 2 x-y-z=1,\end{array}\right.$ 从 $z$ 轴正向看为逆时针方向, 则
$$
\oint_L y^2 \mathrm{~d} x+(z+1) \mathrm{d} y+x \mathrm{~d} z=
$$


$y=x \ln \left(\mathrm{e}+\frac{1}{x^2}\right)$ 的斜渐近线为。


$\lim _{n \rightarrow+\infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n}+\sqrt{1}}+\frac{1}{\sqrt{n}+\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}+\sqrt{n}}\right)=$


记 $F(x)=\int_0^{x^2} \cos \left(\pi t^2\right) \mathrm{d} t$ ,则 $F^{\prime}(1)=$


设 $f(x)=\min \left\{x^2, 1\right\}$ ,则 $\int_0^2 f(x) \mathrm{d} x=$


常微分方程 ${ }^a y^{\prime}+2 x y=2 x$ 的通解为


$\int_0^{+\infty} \frac{\mathrm{d} x}{\mathrm{e}^x+1}=$


常微分方程 $x^2 y^{\prime \prime}+x y^{\prime}-4 y=0(x>0)$ 的通解为


设 $p>0$ ,广义积分 $\int_1^{+\infty} x^2 \ln \left(1+\sin \frac{1}{x^p}\right) \mathrm{d} x$ 收敛,则实数 $p$ 的取值范围是


由曲线段 $y=\sqrt{x-\frac{1}{4}} , x \in[1,4]$ 绕 $x$ 轴旋转一周所成旋转面的面积为


设连续函数 $f(x)$ 满足 $2 \int_1^x f(t) \mathrm{d} t=x f(x)+x^2$ ,则 $f^{\prime}(1)=$


$\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{n+k-\sin ^2 n}=$


设函数 $f(x, y)=\mathrm{e}^{x+y}$, 点 $(a, b)$ 为圆周 $x^2+y^2=1$ 上的动点, $D$ 为中心在原点的正方形. 若要使积分 $I(a, b)=\iint_D f(a+x, b+y) \mathrm{d} x \mathrm{~d} y$ 最大, 则 $(a, b)$ 应取


设数列 $\left\{a_n\right\}$ 满足 $a_0=1, a_{n+1}=\sin a_n$, 则幂级数 $\sum_{n=1}^{\infty}\left(a_n+\frac{1}{n}\right) x^n$ 的收敛域为


在定向为逆时针方向的椭圆 $C: \frac{1}{4} x^2+y^2=1$ 上选取一段曲线 $L$, 使得曲线积分 $\int_L \mathrm{~d} x+2 \mathrm{~d} y$ 最大, 则这个最大值为


非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。