查看原题
设曲线 $L:\left\{\begin{array}{l}x^2+y^2=2 x, \\ 2 x-y-z=1,\end{array}\right.$ 从 $z$ 轴正向看为逆时针方向, 则
$$
\oint_L y^2 \mathrm{~d} x+(z+1) \mathrm{d} y+x \mathrm{~d} z=
$$
                        
不再提醒