导数20

数学




解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
已知函数 $f(x)=\ln (1+a x)-x-\frac{1}{a}, g(x)=x-\mathrm{e}^x$.
(1) 若不等式 $f(x) \leqslant \frac{1}{a}-2$ 恒成立, 求 $a$ 的取值范围;
(2) 若 $a=1$ 时, 存在 4 个不同实数 $x_1, x_2, x_3, x_4$, 满足 $f\left(x_1\right)=f\left(x_2\right)=g\left(x_3\right)=g\left(x_4\right)$, 证明: $\left|x_2-x_1\right|=\left|x_4-x_3\right|$.

已知函数 $f(x)=x^2+b x-1$ 有两个零点 $x_1, x_2$, 且 $x_1, x_2$ 的倒数和为 $-1$.
(1) 求函数 $f(x)$ 的解析式;
(2) 若在区间 $[-2,1]$ 上, 不等式 $f(-x)>2 x-m$ 恒成立, 求实数 $m$ 的取值范围.

已知函数 $f(x)=\log _{\frac{1}{2}} \frac{2-a x}{x-2}(a \in \mathbf{R})$ 的图象关于原点对称.
(1) 当 $x \in(2,+\infty)$ 时, $f(x)+\log _{\frac{1}{2}}(x-2) < m$ 恒成立, 求实数 $m$ 的取值范围;
(2) 若关于 $x$ 的方程 $f(x)=\log _{\frac{1}{2}}(x+k)$ 在 $(2,5]$ 上有解, 求实数 $k$ 的取值范围.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。