圆锥曲线10

数学



填空题 (共 3 题 ),请把答案直接填写在答题纸上
曲线$y=3\left(x^{2}+x\right) \mathrm{e}^{x}$ 在点$(0,0)$处的切线方程为

已知双曲线$C: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a>0, b>0)$ 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 $\overrightarrow{F_{1} A}=\overrightarrow{A B}, \quad \overrightarrow{F_{1} B} \cdot \overrightarrow{F_{2} B}=0 $,则C的离心率为

已知抛物线 $y^{2}=2 p x(p>0)$ 的焦点 $F$ 到准线的距离为 2 , 过焦点 $F$ 的直线与抛物线交于 $A, B$
两点, 且 $|A F|=3|F B|$, 则线段 $A B$ 的中点到 $y$ 轴的距离为

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。