科数网
题号:3588    题型:填空题    来源:2023届八校联盟(华师大、西南附中、南京师大、湖南师大、育才中学等)质量评价考试
已知双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左、右焦点分别为 $F_1$ 和 $F_2, O$ 为坐标原点, 过 $F_2$ 作渐近线 $y=\frac{b}{a} x$ 的垂线, 垂足为 $P$, 若 $\angle F_1 P O=\frac{\pi}{6}$, 则双曲线的离心率为 ; 又过点 $P$ 作双曲线的切线交另一条渐近线于点 $Q$, 且 $\triangle O P Q$ 的面积 $S_{\triangle O P Q}$ $=2 \sqrt{3}$, 则该双曲线的方程为
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP