yan19

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 16 题,每小题 5 分,共 50 分,每题只有一个选项正确)
下列级数中条件收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty}(-1)^n\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$ $\text{B.}$ $\sum_{n=2}^{\infty} \frac{(-1)^n+1}{\ln n}$ $\text{C.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \ln (1+n)}$

设级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 $x=1$ 处条件收敛, 且 $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}=a$ 存在, 则
$\text{A.}$ $a=1$. $\text{B.}$ $a=-1$. $\text{C.}$ $a < 1$ $\text{D.}$ $a>1$.

设 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{\sin ^n x+\cos ^n x}\left(0 \leqslant x \leqslant \frac{\pi}{2}\right)$, 若 $F(x)$ 为 $f(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 内的原 函数, 则在 $\left[0, \frac{\pi}{2}\right]$ 内
$\text{A.}$ $F(x)$ 连续, $f(x)$ 可导. $\text{B.}$ $F(x)$ 不连续, $f(x)$ 不可导. $\text{C.}$ $F(x)$ 可导, $f(x)$ 可导. $\text{D.}$ $F(x)$ 可导, $f(x)$ 不可导.

设 $a_0=1, \sum_{n=0}^{\infty} 2 a_n x^{n+1}+\sum_{n=0}^{\infty}(n+1) a_{n+1} x^n=0$, 则级数 $\sum_{n=0}^{\infty} a_n=\quad$ )
$\text{A.}$ 1 $\text{B.}$ e $\text{C.}$ $-1$. $\text{D.}$ $\mathrm{e}^{-1}$.

设 $k>1$, 则级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{k n}+(-1)^n}$ 的敛散性为
$\text{A.}$ 绝对收敛. $\text{B.}$ 条件收敛. $\text{C.}$ 发散. $\text{D.}$ 收敛性与 $k$ 的取值有关.

若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则下列级数 (1) $\sum_{n=1}^{\infty}(-1)^n a_n$; (2) $\sum_{n=1}^{\infty}\left(a_n-2 a_{n+1}\right)$; (3) $\sum_{n=1}^{\infty} \sqrt{a_n}$;
(4) $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 中一定收敛的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

设有函数序列 $f_n(x)=(n+1) x^n, 0 < x < 1, n=1,2, \cdots$, 下列四个结论:
(1) $\lim _{n \rightarrow \infty} f_n(x)=0, x \in(0,1)$; (2) 若数列 $x_n \in(0,1)$, $\lim _{n \rightarrow \infty} x_n$ 存在, 则 $\lim _{n \rightarrow \infty} f_n\left(x_n\right)=0$;
(3) $\lim _{n \rightarrow \infty} f_n^{\prime}(x)=0, x \in(0,1)$; (4) $\lim _{n \rightarrow \infty} \int_0^1 f_n(x) \mathrm{d} x=0$ 中, 正确的是
$\text{A.}$ (1) 和 (2) $\text{B.}$ (3) 和 (4) $\text{C.}$ (1) 和 (3) $\text{D.}$ (2) 和 (4)

设积分 $I=\int_0^{+\infty} \frac{1}{\left(1+x^a\right) \ln \left(1+x^b\right)} \mathrm{d} x$, 其中 $a>0, b>0$, 若该积分收敛, 则必有
$\text{A.}$ $0 < a < 1,0 < b < 1$ $\text{B.}$ $0 < a < 1, b>1$ $\text{C.}$ $a>1,0 < b < 1$ $\text{D.}$ $a>1, b>1$

设有函数序列 $f_n(x)=(n+1) x^n, 0 < x < 1, n=1,2, \cdots$, 下列四个结论:
(1) $\lim _{n \rightarrow} f_n(x)=0, x \in(0,1)$; (2) 若数列 $x_n \in(0,1), \lim _{n \rightarrow} x_n$ 存在, 则 $\lim _{n \rightarrow} f_n\left(x_n\right)=0$;
(3) $\lim _{n \rightarrow \infty} f_n^{\prime}(x)=0 \cdot x \in(0.1)$; (4) $\lim _{n \rightarrow} \int_0^1 f_n(x) \mathrm{d} x=0$ 中, 正确的是
$\text{A.}$ (1) 和 (2) $\text{B.}$ (3) 和 (4) $\text{C.}$ (1) 和 (3) $\text{D.}$ (2) 和 (4)

设积分 $I=\int_0^{+\infty} \frac{1}{\left(1+x^a\right) \ln \left(1+x^b\right)} \mathrm{d} x$, 其中 $a>0, b>0$, 若该积分收敛, 则必有
$\text{A.}$ $0 < a < 1,0 < b < 1$ $\text{B.}$ $0 < a < 1, b>1$ $\text{C.}$ $a>1,0 < b < 1$ $\text{D.}$ $a>1, b>1$

若正项级数 $\sum_{n=1} a_n$ 收敛, 则下列级数
(1) $\sum_{n=1}^{\infty}(-1)^n a_n$,
(2) $\sum_{n=1}\left(a_n-2 a_{n+1}\right)$,
(3) $\sum_{n=1} \sqrt{a_n}$,
(4) $\sum_{n=1}^{\infty} \sqrt{a_n a_{n-1}}$ 中一定收敛的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

下列级数中, 收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{1}{n+n^2}$ $\text{B.}$ $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$ $\text{C.}$ $\sum_{n=1}^{\infty} \sin \frac{1}{\sqrt{n}}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$

下列级数中, 绝对收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{\sin n^2}{n^2}$ $\text{B.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{1}{\sqrt{n}}$ $\text{C.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{1}{n}$ $\text{D.}$ $\sum_{n=1}^{\infty}(-1)^n \cdot \frac{n}{n+1}$

若幂级数 $\sum_{n=0}^{\infty} a_n x^n, \sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别是 $R_1 、 R_2$, 则幂级数 $\sum_{n=0}^{\infty}\left(a_n+b_n\right) x^n\left(a_n \neq-b_n\right)$ 的收敛半径是
$\text{A.}$ $R=\max \left(R_1, R_2\right)$ $\text{B.}$ $R=\min \left(R_1, R_2\right)$ $\text{C.}$ $R=R_1 R_2$ $\text{D.}$ $R=R_1+R_2$

当 $|x| < 1$ 时, 函数 $\ln (1+x)$ 在 $x=0$ 的幂级数展开式为
$\text{A.}$ $x+\frac{1}{2} x^2+\frac{1}{3} x^3+\frac{1}{4} x^4+\cdots+\frac{1}{n} x^n+\cdots$ $\text{B.}$ $x-\frac{1}{2} x^2+\frac{1}{3} x^3-\frac{1}{4} x^4+\cdots+(-1)^{n-1} \cdot \frac{1}{n} x^n+\cdots$ $\text{C.}$ $x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+\frac{1}{4 !} x^4+\cdots+\frac{1}{n !} x^n+\cdots$ $\text{D.}$ $x-\frac{1}{3 !} x^3+\frac{1}{5 !} x^5-\frac{1}{7 !} x^7+\cdots+(-1)^{n-1} \frac{1}{(2 n-1) !} x^{2 n-1}+\cdots$

将函数 $f(x)=\frac{1}{3+4 x}$ 展开为 $x-1$ 的幂级数, 则该级数的收敛半径为
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{3}{4}$ $\text{C.}$ $\frac{5}{4}$ $\text{D.}$ $\frac{7}{4}$

二、填空题 (共 5 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设函数 $f(x)=x-[x]$, 其中 $[x]$ 表示不超过 $x$ 的最大整数, 令
$$
a_n=\int_{-1}^1 f(x) \cos n \pi x \mathrm{~d} x, b_n=\int_{-1}^1 f(x) \sin n \pi x \mathrm{~d} x, n=0,1,2, \cdots .
$$
令 $S(x)=\sum_{n=1}^{\infty}\left(a_n \cos n \pi x+b_n \sin n \pi x\right),-\infty < x < +\infty$, 则 $S(-5)=$


$\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+\cdots+\frac{2 n-1}{2^n}\right)=$


设函数 $f(x)$ 在闭区间 $[0,1]$ 上连续,在开区间 $(0,1)$ 内可导, 且 $f(0)=0, f(1)=1$. 若三个正 数 $a, b, c$ 满足 $a+b+c=1$, 证明: 存在三个互不相等的数 $\xi_i \in(0,1), i=1,2,3$, 使得
$$
\frac{a}{f^{\prime}\left(\xi_1\right)}+\frac{b}{f^{\prime}\left(\xi_2\right)}+\frac{c}{f^{\prime}\left(\xi_3\right)}=1 .
$$


正项级数 $\sum_{n=0}^{\infty} \frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^n}+\cdots$ 的和为


设 $f(x)$ 是周期为 $2 \pi$ 的函数, 其傅里叶级数的和函数为 $s(x), f(x)$ 在 $(-\pi, \pi]$ 内的函数表达式为
$f(x)=\left\{\begin{array}{rr}x & 0 \leq x \leq \pi \\ 0 & -\pi < x < 0\end{array}\right.$, 则 $s(9 \pi)=$


三、解答题 ( 共 19 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设数列 $\left\{a_n\right\}$ 满足 $a_1=1,(n+1) a_n+1=\left(n+\frac{1}{2}\right) a_n$, 证明: 当 $|x| < 1$ 时幂级数 $\sum_{n=1} a_n x^n$ 收敛, 并求其和函数.



设 $x \in[-1,1]$, 对 $\forall n \in \mathbb{N}$ 有 $a_n=\frac{1}{3 n+4}-\frac{3}{3 n+2}+\frac{2}{3 n+1}$,

试证:
(1) $f(x)=\int_0^1 \frac{t^3-3 t+2}{1-x^3 t^3} \mathrm{~d} t=\sum_{n=0}^{+\infty} a_n x^{3 n}$;
(2) $\lim _{x \rightarrow 1^{-}} f(x)=\sum_{n=0}^{+\infty} a_n$;
(3) $\lim _{x \rightarrow 1^{-}} \int_0^1 \frac{t^3-3 t+2}{1-x^3 t^3} \mathrm{~d} t=\int_0^1 \frac{2-t-t^2}{1+t+t^2} \mathrm{~d} t$, 由此推出 $\sum_{n=0}^{+\infty} a_n$ 的值.



(1) 证明: $\ln (n+1) < 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} < 1+\ln n$;
(2) 设 $F_0(x)=\ln x, F_{n+1}(x)=\int_0^x F_n(t) \mathrm{d} t, n=0,1,2, \cdots$, 其中 $x>0$, 求极限 $\lim _{n \rightarrow \infty} \frac{n ! F_n(1)}{\ln n}$.



求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{4 n-3}$ 的和函数 $(x \geqslant 0)$.



设 $f(x)$ 在 $[0,1]$ 上二阶可导, $f(0)=0$, 且 $\lim _{x \rightarrow 1^{-}} \frac{f(x)}{x-1}=1$.
( I ) 证明 : 存在 $\xi \in(0,1)$, 使得 $f^{\prime}(\xi)=0$;
(II) 证明: 存在 $\eta \in(0,1)$, 使得 $f^{\prime \prime}(\eta)=2$.



设曲线 $y=\frac{1}{x(\ln x)^{n+1}}(n=1,2, \cdots)$ 在 $\left[\mathrm{e}^2,+\infty\right)$ 上与 $x$ 轴所围无界区域的面积为
$$
a_n \text {, 求 } \sum_{n=1}^{\infty} \frac{a_n}{n+1} \text {. }
$$



I ) 设 $x>0$, 证明: 函数 $f(x)=\frac{\ln (1+x)-x}{x^2}$ 单调递增;
(II) 设 $0 < x < 1$, 证明不等式: $x-\frac{1}{2} x^2 < \ln (1+x) < x+(\ln 2-1) x^2$.



设数列 $\left\{x_n\right\}$ 满足 $x_1=1, x_{n+1}=\frac{x_n+2}{x_n+1}\left(n \in \mathbb{Z}^{+}\right)$, 证明: $\lim _{n \rightarrow \infty} x_n$ 存在且求极限值 $A$.



证明导函数的介值性: 若 $f(x)$ 在区间 $[a, b]$ 上可导且 $f_{+}^{\prime}(a) f_{-}^{\prime}(b) < 0$ ,则存在 $\xi \in(a, b)$ 使得 $f^{\prime}(\xi)=0$.



设 $a_n>0$ 且 $\lim _{n \rightarrow \infty}\left(a_1+a_2+\cdots+a_n\right)$ 收敛,数列 $\left\{y_n\right\}: y_1=1,2 y_{n+1}=y_n+\sqrt{y_n^2+a_n}(n=1,2, \cdots)$. 证明: $\left\{y_n\right\}$ 是单调增加的且收敛的数列.



证明函数项级数 $\sum_{n=1}^{\infty} \frac{(1-x) x^n}{1-x^{2 n}} \cos (n x)$
(1) 在区间 $\left[0, \frac{1}{2}\right]$ 上一致收敛;
(2) 在区间 $\left(\frac{1}{2}, 1\right)$ 上一致收敛.



求函数 $f(x)=\cos (\alpha x)$ 在 $[-\pi, \pi]$ 上的傅里叶级数, 其中 $\alpha$ 不是整数,并证明:
(1) $\frac{1}{\alpha}+2 \alpha \sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha^2-n^2}=\frac{\pi}{\sin (\alpha \pi)}$.
(2) $\sum_{n=1}^{\infty} \frac{1}{\left(4 n^2-1\right)^2}=\frac{\pi^2-8}{16}$.



设函数 $f(x)$ 在 $[a, b]$ 上连续.
(1) 证明存在 $\xi \in(a, b)$, 使得 $\int_a^{\xi} f(x) \mathrm{d} x=(b-\xi) f(\xi)$;
(2) 如果 $f(x)$ 在 $(a, b)$ 内取得最大值和最小值, 证明存在 $\eta \in(a, b)$, 使得
$$
\int_a^\eta f(x) \mathrm{d} x=(\eta-a) f(\eta) .
$$



判断级数 $\sum_{n=1}^{\infty} \dfrac{2^n \cdot n !}{n^n}$ 的敛散性, 并计算极限 $\lim _{n \rightarrow \infty} \dfrac{2^n \cdot n !}{n^n}$.



求级数 $\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}$ 的和函数 $s(x)$ 与收敛半径, 并利用 $s(x)$ 计算 $\sum_{n=0}^{\infty} \frac{1}{(2 n+1) \cdot 2^{n+1}}$ 的和.



设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数为 $y(x)$, 满足 $y(0)=2$, 且该 幂级数的系数满足关系式 $a_{n-1}=n a_n$, 求 $y(x)$ 及系数 $a_n$.



讨论级数 $\sum_{n=1}^{\infty} \frac{a^n n \text { ! }}{n^n}$ 的敛散性,其中 $a>0$.



已知$x_1=25$,$x_{n+1}=\arctan x_{n}$$(n =1,2,3,...)$.
(1)证明数列$
\left\{{x_n}\right\}
$有极限,并求此极限.
(2)求$\lim _{x \rightarrow \infty} \frac{x_n-x_{n+1}}{x_n^3}
$.



求幂级数 $\sum_{n=1}^{\infty}\left(n+\frac{1}{n}\right) x^n$ 的和函数, 并求数项级数 $\sum_{n=1}^{\infty} \frac{n^2+1}{n}\left(\frac{1}{2}\right)^n$ 的和



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。