科数网
试题 ID 2255
【所属试卷】
2020年考研数学一真题解析
设数列 $\left\{a_n\right\}$ 满足 $a_1=1,(n+1) a_n+1=\left(n+\frac{1}{2}\right) a_n$, 证明: 当 $|x| < 1$ 时幂级数 $\sum_{n=1} a_n x^n$ 收敛, 并求其和函数.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设数列 $\left\{a_n\right\}$ 满足 $a_1=1,(n+1) a_n+1=\left(n+\frac{1}{2}\right) a_n$, 证明: 当 $|x| < 1$ 时幂级数 $\sum_{n=1} a_n x^n$ 收敛, 并求其和函数.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见