清空
下载
撤销
重做
查看原题
设 $a_n>0$ 且 $\lim _{n \rightarrow \infty}\left(a_1+a_2+\cdots+a_n\right)$ 收敛,数列 $\left\{y_n\right\}: y_1=1,2 y_{n+1}=y_n+\sqrt{y_n^2+a_n}(n=1,2, \cdots)$. 证明: $\left\{y_n\right\}$ 是单调增加的且收敛的数列.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒