高等数学34

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、解答题 ( 共 29 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $f(x), g(x)$ 在 $(-\infty,+\infty)$ 上具有二阶连续导数, $f(0)=g(0)=1$, 且对 $x O y$ 平面上的任一简单闭曲线 $C$, 曲线积分
$$
\oint_C\left[y^2 f(x)+2 y \mathrm{e}^x-8 y g(x)\right] \mathrm{d} x+2[y g(x)+f(x)] \mathrm{d} y=0,
$$
求函数 $f(x), g(x)$.



求由 $x O z$ 平面上的曲线 $\left\{\begin{array}{l}\left(x^2+z^2\right)^2=4\left(x^2-z^2\right) \\ y=0\end{array}\right.$ 绕 $O z$ 轴 旋转而成的曲面所包围区域的体积.



证明下列不等式:
(1) 设 $x \in[0, \pi], t \in[0,1]$, 则 $\sin t x \geq t \sin x$;
(2) 设 $p>0$, 则 $\int_0^{\frac{\pi}{2}}|\sin u|^p \mathrm{~d} u \geq \frac{\pi}{2(p+1)}$;
(3) 设 $x \geq 0, p>0$, 则 $\int_0^x|\sin u|^p \mathrm{~d} u \geq \frac{x|\sin x|^p}{p+1}$.



设函数 $f(x)$ 在闭区间 $[a, b]$ 上具有一阶连续导数, 证 明: $\int_a^b \sqrt{1+\left[f^{\prime}(x)\right]^2} \mathrm{~d} x \geq \sqrt{(a-b)^2+[f(a)-f(b)]^2}$, 并给出等号成立的条件.



证明级数 $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{2 n}\right) \cdot \ln \left(1+\frac{1}{2 n+1}\right)$ 收敛, 并求其 和,



对实数 $r$, 用 $\|r\|$ 表示 $r$ 和最近的整数的距离: $\|r\|=\min \{|r-n|: n \in \mathbb{Z}\}$.
1. 试问是否存在非零实数 $s$, 满足 $\lim _{n \rightarrow \infty}\left\|(\sqrt{2}+1)^n s\right\|=0$ ?
2. 试问是否存在非零实数 $s$, 满足 $\lim _{n \rightarrow \infty}\left\|(\sqrt{2}+3)^n s\right\|=0$ ?



求曲面 $x^2+x y+e^z=3$ 在点 $(1,1,0)$ 处的切平面 及法线方程.



设函数 $z=f\left(x, 2 x-y, x^2+y^2\right)$ ,其中 $f$ 具有二 阶连续偏导数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.



计算二重积分 $\iint_D\left|y^2-x^2\right| \mathrm{d} \sigma$ ,其中
$$
D=\{(x, y) \mid x \in[-1,1], y \in[0,2]\} .
$$



已知函数 $u=x^2+e^y z$ ,其中 $z=z(x, y)$ 由方程 $x z+\ln (1+y z)=1$ 确定,求函数 $u$ 在点 $(1,0)$ 处沿方向 $\mathrm{d}=(3,-4)$ 的方向导数.



计算曲面积分 $\iint_{\Sigma}(2 z+1) \mathrm{d} x \mathrm{~d} y$ ,其中曲面 $\Sigma: z=x^2+y^2(0 \leq z \leq 1)$ , 方向取下侧.



求变力 $\mathrm{F}=\left(x+y-x y, x-y+y^2\right)$ 将质点从原 点 $O(0,0)$ 沿曲线 $y=\sin x$ 移动到点 $A(\pi, 0)$ 所做的功.



设函数 $f(x)$ 具有二阶连续导数,且
$$
f(0)=1, f^{\prime}(0)=1 \text {. }
$$
假设对任意光滑闭曲面 $\boldsymbol{\Sigma}$ ,恒有
$$
\oint_{\Sigma}\left[f^{\prime}(x)+x^2\right] \mathrm{d} y \mathrm{~d} z+(z+1) f(x) \mathrm{d} x \mathrm{~d} y=0 .
$$
试求 $f(x)$ 的表达式.



计算 $I=\iiint_{\Omega} \sqrt{x^2+y^2+z^2} \mathrm{~d} V$ ,其中 $\Omega$ 是由 曲面 $\Sigma:\left(x^2+y^2+z^2\right)^2=x^2+y^2$ 所围成的闭区域.



飞行器在发射升空的过程中,由于其表面与空气摩 擦,飞行器的表面温度会发生变化. 设飞行器表面为椭球面, 其方程为 $4 x^2+y^2+4 z^2=16$ ,表面的温度函数为
$$
T=8 x^2+4 y z-16 z+600 .
$$
试确定飞行器表面温度最高和最低的点.



求极限 $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$



设 $f(x)=\left(x^3 e^{x^2}+1\right) \sin ^3 x+\int_{-\pi}^\pi f(x) \sin ^3 x d x$, 求 $f(x)$.



已知 $f^{\prime \prime}(x)$ 连续, 且 $f(0)=f(\pi)=1$, 求积分 $\int_0^\pi\left[f(x)+f^{\prime \prime}(x)\right] \sin x d x$.



设 $f(x)=x^2 \cos ^2 x$, 求 $f^{(12)}(0)$.



设函数 $f(x)$ 在 $x=0$ 处可导, 且 $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, 若 $\lim _{x \rightarrow 0} \frac{\int_0^x t f\left(x^2-t^2\right) d t}{x^a}=b(b \neq 0)$ 求 $a, b$ 的值.



讨论方程 $f(x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\cdots+(-1)^n \frac{x^n}{n}=0$ ( $n$ 为正整数) 有几个实根.
分析: 对于方程根的存在性问题, 往往需要对其进行分类讨论; 分别是 $x$ 的分类 讨论和 $n$ 的分类讨论.



讨求曲线 $\left\{\begin{array}{l}x=t-\sin t \\ y=1-\cos t\end{array}(0 \leqslant t \leqslant 2 \pi)\right.$ 与 $x$ 轴所围成区域的面积.



设直角坐标空间中有两点 $A(1,1,0), B(0,2,1)$.
(1)求经过 $A B$ 且与坐标面 $z=0$ 垂直的平面方程;
(2)求经过 $A B$ 的直线方程;
(3) 将直线 $A B$ 绕 $z$ 轴旋转一周, 求介于面 $z=0$ 与 $z=2$ 之间的旋转体体积.



设函数 $f(x) \in C[0, \pi]$, 满足 $\int_0^\pi f(x) d x=0$, 证明:
(1) 存在 $\xi \in(0, \pi)$, 使得 $f(\xi)=0$;
(2) 若同时还满足 $\int_0^\pi f(x) \cos x d x=0$, 则存在不同的 $\eta_1, \eta_2$ 使得 $f\left(\eta_1\right)=f\left(\eta_2\right)=0$.



设数列 $\left\{a_n\right\}$ 满足: $a_1=1, a_n=\frac{a_{n-1}}{n\left(a_{n-1}+1\right)}, n \geqslant 2$, 证明 $\lim _{n \rightarrow \infty} n ! a_n=\frac{1}{e}$.



计算二重积分 $I=\iint_D x \mathrm{~d} x \mathrm{~d} y$, 其中 $D$ 由 $y=\sqrt{1-x^2}, y=\sqrt{2 x-x^2}$ 与 $x$ 轴所围成的区域.



设 $y=y(x)$ 由 $x^3+3 x^2 y-2 y^3=2$ 确定, 求 $y(x)$ 的极值.



设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内二阶可导,且 $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=1, \lim _{x \rightarrow 1^{-}} \frac{f(x)}{x-1}=2$. 证明:
(1) 存在 $c \in(0,1)$, 使得 $f(c)=0$;
(2) 存在 $\xi \in(0,1)$, 使得 $f^{\prime \prime}(\xi)=f(\xi)$;
(3) 存在 $\eta \in(0,1)$, 使得 $f^{\prime \prime}(\eta)-3 f^{\prime}(\eta)+2 f(\eta)=0$.



设 $u=f(x, y)$ 满足 $\mathrm{d} u=y^2 \mathrm{~d} x+(2 x y+1) \mathrm{d} y$, 且 $f(0,0)=1$, 计算 $\iint_{\Sigma} z f(x, y) \mathrm{d} S$, 其中 $\Sigma$ 是 $z=\sqrt{x^2+y^2}$ 被 $x^2+(y-1)^2=1$ 所截的部分.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。