清空
下载
撤销
重做
查看原题
设 $u=f(x, y)$ 满足 $\mathrm{d} u=y^2 \mathrm{~d} x+(2 x y+1) \mathrm{d} y$, 且 $f(0,0)=1$, 计算 $\iint_{\Sigma} z f(x, y) \mathrm{d} S$, 其中 $\Sigma$ 是 $z=\sqrt{x^2+y^2}$ 被 $x^2+(y-1)^2=1$ 所截的部分.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒