单选题 (共 3 题 ),每题只有一个选项正确
设随机变量 $X$ 的概率密度为 $f(x)$, 且满足 $f(x)=f(-x), F(x)$ 为 $X$ 的分布函数, 则 对任意实数 $a$, 下列式子中成立的是
$\text{A.}$ $F(-a)=\frac{1}{2}-\int_0^a f(x) \mathrm{d} x$
$\text{B.}$ $F(-a)=1-\int_0^a f(x) \mathrm{d} x$
$\text{C.}$ $F(a)=F(-a)$
$\text{D.}$ $F(-a)=2 F(a)-1$
设随机变量 $X, Y$ 相互独立, $\boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{x})$ 与 $\boldsymbol{F}_{\boldsymbol{Y}}(\boldsymbol{y})$ 分别是 $X$ 与 $Y$ 的分布函数, 则随机 变量 $Z=\max \{X, Y\}$ 分布函数 $\boldsymbol{F}_{\mathbf{Z}}(\mathbf{z})$ 为
$\text{A.}$ $\max \left\{F_X(z), F_Y(z)\right\}$
$\text{B.}$ $F_X(z)+F_Y(z)-F_X(z) F_Y(z)$
$\text{C.}$ $F_X(z) F_Y(z)$
$\text{D.}$ $F_X(z)$ 或 $F_Y({z})$
设随机变量 $X$ 的分布函数为 $F(x)=0.4 \Phi(2 x-1)+0.6 \Phi\left(\frac{x-1}{2}\right)$, 则 $E(X)=$ .
$\text{A.}$ -0.4
$\text{B.}$ 0.4
$\text{C.}$ -0.8
$\text{D.}$ 0.8