以下结论正确的是
$\text{A.}$ 对向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$, 如果 $k_1 \boldsymbol{\alpha}_1+k_2 \boldsymbol{\alpha}_2+\cdots+k_n \boldsymbol{\alpha}_n=\mathbf{0}$, 就必有 $k_1=k_2=\cdots=k_n=0$, 则称向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关;
$\text{B.}$ 如果有一组不全为零的数 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 使得 $\lambda_1 \boldsymbol{\alpha}_1+\lambda_2 \boldsymbol{\alpha}_2+\cdots+\lambda_n \boldsymbol{\alpha}_n \neq \boldsymbol{0}$ 成立, 则向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性无关;
$\text{C.}$ 若向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性相关, 则其中每一个向量都能被其余向量线性表示;
$\text{D.}$ 若 $k_1=k_2=\cdots=k_n=0$, 使 $k_1 \boldsymbol{\alpha}_1+k_2 \boldsymbol{\alpha}_2+\cdots+k_n \boldsymbol{\alpha}_n=\mathbf{0}$, 则向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性无关.