清空
下载
撤销
重做
查看原题
设 $\boldsymbol{A}=\boldsymbol{E}-\boldsymbol{\xi} \boldsymbol{\xi}^T$ ,其中 $\boldsymbol{E}$ 是 $\boldsymbol{n}$ 阶单位矩阵, $\boldsymbol{\xi}$ 是 $n$ 维非零列向量, $\xi^T$ 是 $\xi$ 的转置,证明:
(1) $A^2=A$ 的充要条件是 $\xi^T \xi=1$ ;
(2) 当 $\xi^T \xi=1$ 时, $A$ 是不可逆矩阵.
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒