设 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 为两两正交的单位向量, 又 $\boldsymbol{\beta} \neq \mathbf{0}$ 且 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}$ 线性相关,令 $\boldsymbol{A}=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)\left(\begin{array}{l}\boldsymbol{\alpha}_1^{\mathrm{T}} \\ \boldsymbol{\alpha}_2^{\mathrm{T}} \\ \boldsymbol{\alpha}_3^{\mathrm{T}}\end{array}\right)$.
(I) 证明: $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 唯一线性表示;
(II) 验证 $\boldsymbol{\beta}$ 为矩阵 $\boldsymbol{A}$ 的特征向量, 并求相应的特征值.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$