单选题 (共 3 题 ),每题只有一个选项正确
三个随机事件 $A, B, C$ 相互独立的充分条件是
$\text{A.}$ $A, B, C$ 两两独立.
$\text{B.}$ $P(A+B+C)=1-P(\bar{A}) P(\bar{B}) P(\bar{C})$.
$\text{C.}$ $P(A B C)=P(A) P(B) P(C)$.
$\text{D.}$ $P(B-A)=1$.
一批产品共 20 件, 其中 15 件正品, 5 件次品, 现有放回地抽取, 每次只取一件, 直到取得正品为 止. 假定每件产品被抽取的机会相等, 则抽取次数是奇数的概率以及平均抽取次数分别为
$\text{A.}$ $\frac{2}{3}, \frac{4}{3}$.
$\text{B.}$ $\frac{1}{3}, \frac{3}{4}$.
$\text{C.}$ $\frac{1}{5}, \frac{3}{4}$.
$\text{D.}$ $\frac{4}{5}, \frac{4}{3}$.
已知 $X \sim N(0,4)$, 样本 $X_1, X_2$ 取自总体 $X$, 则统计量 $T=\frac{\left(X_1-X_2\right)^2}{\left(X_1+X_2\right)^2}$ 服从的分布是
$\text{A.}$ $F(1,1)$.
$\text{B.}$ $\chi^2(1)$.
$\text{C.}$ $N(0,1)$.
$\text{D.}$ $t(1)$.