lass

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 6 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知 $Q=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9\end{array}\right), P$ 为三阶非零矩阵, 且满足 $P Q=0$, 则
$\text{A.}$ $t=6$ 时, $P$ 的秩必为 1 $\text{B.}$ $t=6$ 时, $P$ 的秩必为 2 $\text{C.}$ $t \neq 6$ 时, $P$ 的秩必为 1 $\text{D.}$ $t \neq 6$ 时, $P$ 的秩必为 2

设 $A, B$ 都是 $n$ 阶非零矩阵,且 $A B=0$ ,则 $A$ 和 $B$ 的秩
$\text{A.}$ 必有一个等于零 $\text{B.}$ 都小于 $n$ $\text{C.}$ 一个小于 $\boldsymbol{n}$ ,一个等于 $\boldsymbol{n}$ $\text{D.}$ 都等于 $n$

设 $n(n \geq 3)$ 阶矩阵 $A=\left(\begin{array}{ccccc}1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a & a & a & \cdots & 1\end{array}\right)$, 若矩阵 $A$ 的秩为 $n-1$ ,则 $a$ 必为
$\text{A.}$ 1 $\text{B.}$ $\frac{1}{1-n}$ $\text{C.}$ -1 $\text{D.}$ $\frac{1}{n-1}$

设 $A$ 是 $m \times n$ 矩阵, $B$ 是 $n \times m$ 矩阵,则
$\text{A.}$ 当 $m>n$ 时,必有行列式 $|A B| \neq 0$ $\text{B.}$ 当 $m>n$ 时,必有行列式 $|A B|=0$ $\text{C.}$ 当 $n>m$ 时,必有行列式 $|A B| \neq 0$ $\text{D.}$ 当 $n>m$ 时,必有行列式 $|A B|=0$

设三阶矩阵 $A=\left(\begin{array}{lll}a & b & b \\ b & a & b \\ b & b & a\end{array}\right)$ ,若 $A$ 的伴随矩阵的秩等于1,则必有
$\text{A.}$ $a=b$ 或 $a+2 b=0$ $\text{B.}$ $a=b$ 或 $a+2 b \neq 0$ $\text{C.}$ $a \neq b$ 且 $a+2 b=0$ $\text{D.}$ $a \neq b$ 且 $a+2 b \neq 0$

设 $A$ 为 $m \times n$ 型矩阵, $B$ 为 $n \times m$ 型矩阵, $E$ 为 $m$ 阶单位矩阵. 若 $A B=E$ ,则
$\text{A.}$ 秩 $r(A)=m$ ,秩 $r(B)=m$ $\text{B.}$ 秩 $r(A)=m$ ,秩 $r(B)=n$ $\text{C.}$ 秩 $r(A)=n$ ,秩 $r(B)=m$ $\text{D.}$ 秩 $r(A)=n$ ,秩 $r(B)=n$

二、判断题 (共 1 题,每小题 5 分,共 20 分)
若 $A$ 和 $B$ 都是 $n$ 阶非零方阵,且 $A B=0$ ,则 $A$ 的秩必小于 $n$.
$\text{A.}$ 正确 $\text{B.}$ 错误

三、填空题 (共 8 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\boldsymbol{A}=\left(\begin{array}{cccc}a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{n} \\ a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{n}\end{array}\right)$, 其中 $a_{i} \neq 0, b_{i} \neq 0(i=1,2, \cdots, n)$, 则矩阵 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=$


设 $\boldsymbol{A}$ 是 $4 \times 3$ 矩阵, 且 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=2$, 而 $\boldsymbol{B}=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3\end{array}\right)$, 则 $r(\boldsymbol{A} \boldsymbol{B})= $.


设 4 阶方阵 $A$ 的秩为 2 ,则其伴随矩阵 $A^*$ 的秩为


设 $A=\left(\begin{array}{cccc}k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k\end{array}\right)$ ,且秩 $(A)=3$ ,则 $k=$


设矩阵 $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ ,则 $A^3$ 的秩为


设矩阵 $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ ,则 $A^3$ 的秩为


设三阶矩阵 $\boldsymbol{A}$ 的特征值互不相同,且行列式 $|\boldsymbol{A}|=0$ ,则 $A$ 的秩为


设 $\alpha$ 为三维单位列向量, $\boldsymbol{E}$ 为三阶单位矩阵,则矩阵 $\boldsymbol{E}-\boldsymbol{\alpha} \boldsymbol{\alpha}^T$ 的秩为


四、解答题 ( 共 1 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $A$ 为 $m$ 阶实对称矩阵且正定, $B$ 为 $m \times n$ 实矩阵, $B^T$ 为 $B$ 的转置矩阵,试证: $B^T A B$ 为正定矩阵的充分必要条件是 $B$ 的秩 $r(B)=n$.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。