李林考研数学考前冲刺模拟卷1(数学一)



单选题 (共 10 题 ),每题只有一个选项正确
当 $x \rightarrow 0$ 时, $\mathrm{e}^x-\frac{1+a x^2}{1+b x}$ 与 $x^3$ 是同阶无穷小, 则
$\text{A.}$ $a=\frac{1}{2}, b=1$. $\text{B.}$ $a=-\frac{1}{2}, b=1$. $\text{C.}$ $a=\frac{1}{2}, b=-1$. $\text{D.}$ $a=-\frac{1}{2}, b=-1$.

设$f(x)$在[-1,1]上二阶可导,且$f''(x)>0,$$\int_{-1}^1f(x) \mathrm{d} x=2$,则
$\text{A.}$ $f(x) < 0$. $\text{B.}$ $f(0)>0$. $\text{C.}$ $f(x)\leq1$. $\text{D.}$ $f(0)>1$.

设 $f(x)$ 在 $[0,1]$ 上可导, 且 $f^{\prime}(x) < 0$, 则下列结论正确的是
(1) 当 $0 < t < 1$ 时, $\int_0^t f(x) \mathrm{d} x < \int_0^1 t f(x) \mathrm{d} x$.
(2) 当 $0 < t < 1$ 时, $\int_0^t f(x) \mathrm{d} x>\int_0^1 t f(x) \mathrm{d} x$.
(3) 当 $x \geqslant 0$ 时, $\int_0^x x f(t) \mathrm{d} t \geqslant 2 \int_0^x t f(t) \mathrm{d} t$.
(4) 当 $x \geqslant 0$ 时, $\int_0^x x f(t) \mathrm{d} t \leqslant 2 \int_0^x t f(t) \mathrm{d} t$.
$\text{A.}$ (1) (4). $\text{B.}$ (2) (3). $\text{C.}$ (2) (4). $\text{D.}$ (1) (3).

设级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 $x=1$ 处条件收敛, 且 $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}=a$ 存在, 则
$\text{A.}$ $a=1$. $\text{B.}$ $a=-1$. $\text{C.}$ $a < 1$ $\text{D.}$ $a>1$.

设曲面 $x y z=a(a>0)$ 与球面 $x^2+y^2+z^2=1$ 在某点相切,则 $a=$
$\text{A.}$ $\sqrt{3}$. $\text{B.}$ $\frac{\sqrt{3}}{3}$. $\text{C.}$ $\frac{1}{3}$. $\text{D.}$ $\frac{\sqrt{3}}{9}$.

设级数 $\sum_{n=2}^{\infty} \frac{1}{n \ln ^p n}$ 与积分 $\int_0^{\frac{\pi}{4}} \frac{\mathrm{d} x}{\sqrt{\cos x}(\sqrt{\sin x})^p}(p>0)$ 均收玫, 则
$\text{A.}$ $1 < p < 2$. $\text{B.}$ $0 < p \leqslant 2$. $\text{C.}$ $0 < p < 1$. $\text{D.}$ $1 \leqslant p \leqslant 2$.

设 $\boldsymbol{b}=(3,2)^{\mathrm{T}}$, 线性方程组 $\boldsymbol{A}_{2 \times 2} \boldsymbol{x}=\boldsymbol{b}$ 有通解 $k(-2,1)^{\mathrm{T}}+(3,-4)^{\mathrm{T}}$, 则 $\boldsymbol{\beta}=(5$, $-10)^{\mathrm{T}}$ 是下列哪个方程组的解
$\text{A.}$ $\boldsymbol{A x}=\left(\begin{array}{c}5 \\ -10\end{array}\right)$ $\text{B.}$ $\boldsymbol{A x}=\left(\begin{array}{c}3 \\ -4\end{array}\right)$ $\text{C.}$ $\boldsymbol{A x}=\left(\begin{array}{c}-2 \\ 1\end{array}\right)$. $\text{D.}$ $\boldsymbol{A} \boldsymbol{x}=\left(\begin{array}{l}9 \\ 6\end{array}\right)$.

设点 $P_i\left(x_i, y_i\right)(i=1,2,3)$ 为 $x O y$ 平面上三个不同的点, $\boldsymbol{A}=\left(\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right)$, 则 三点 $P_1, P_2, P_3$ 在同一直线上的充分必要条件是
$\text{A.}$ $|\boldsymbol{A}|=0$. $\text{B.}$ $|\boldsymbol{A}| \neq 0$. $\text{C.}$ $r(\boldsymbol{A})=1$. $\text{D.}$ $r(\boldsymbol{A})=2$.

设平面区域 $D=\left\{(x, y) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 4-x^2\right\}$, 向 $D$ 内随机投掷一点 $(X$, $Y)$, 记 $A=\{X \leqslant 1\}, B=\{Y \leqslant 3\}$, 则随机事件 $A, B$ 恰好有一个发生的概率为()
$\text{A.}$ $\frac{1}{16}$. $\text{B.}$ $\frac{7}{16}$. $\text{C.}$ $\frac{5}{16}$. $\text{D.}$ $\frac{3}{16}$.

设 $X_1, X_2, X_3, X_4$ 为来自总体 $N\left(1, \sigma^2\right)(\sigma>0)$ 的简单随机样本, $\bar{X}$ 为样本均值, $S^2$ 为样本方差, 则下列选项正确的是
$\text{A.}$ $\frac{X_1-X_2}{\left|X_3+X_4-2\right|} \sim t(2)$. $\text{B.}$ $\frac{4(\bar{X}-1)^2}{\sigma^2} \sim \chi^2(2)$. $\text{C.}$ $\frac{4(\bar{X}-1)^2}{S^2} \sim F(3,1)$. $\text{D.}$ $\frac{\left(X_1-X_2\right)^2+\left(X_3-X_4\right)^2}{2 \sigma^2} \sim E\left(\frac{1}{2}\right)$.

填空题 (共 6 题 ),请把答案直接填写在答题纸上
设曲线 $L:\left\{\begin{array}{l}y^2=x, \\ z=3(y-1),\end{array}\right.$ 则 $L$ 在 $y=1$ 对应点处的切线方程为

双纽线 $r^2=a^2 \cos 2 \theta(a>0)$ 绕极轴旋转所成旋转曲面的面积为

设 $\Sigma$ 为 $x^2+y^2+z^2=1(z \geqslant 0), l, m, n$ 为 $\Sigma$ 上任一点处的外法线的方向余弦, 则 $I=\iint_{\Sigma} z(l x+m y+n z) \mathrm{d} S=$

设向量场 $\boldsymbol{A}(x, y, z)=x y \boldsymbol{i}-y z \boldsymbol{j}+z x \boldsymbol{k}$, 则 $\operatorname{div}[\operatorname{rot} \boldsymbol{A}(x, y, z)]=$

设 $\boldsymbol{\alpha}_1=(1,1,5)^{\mathrm{T}}, \boldsymbol{\alpha}_2=(2,1, a+8)^{\mathrm{T}}, \boldsymbol{\alpha}_3=(1, a, 3)^{\mathrm{T}}$, 若 $\boldsymbol{\beta}=(1,2,4)^{\mathrm{T}}$ 不能由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示,则 $a=$

设 $X_1, X_2, \cdots, X_n$ 为来自总体 $X \sim B(N, p)(0 < p < 1)$ 的简单随机样本, 则 $p$ 的最大似然估计量 $\hat{p}=$

解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x), g(x)$ 在 $x=0$ 的某邻域内连续, $f(0)=g(0) \neq 0$, 求 $\lim _{x \rightarrow 0} \frac{\int_0^{x^2} f\left(\sqrt{x^2-t}\right) \mathrm{d} t}{\int_0^1 x^2 g(x t) \mathrm{d} t}$.

设 $f(x)$ 连续且不恒为零, 若 $f(x)$ 满足
$$
f(x)=\int_0^1 \mathrm{e}^{-x} f^2(t) \mathrm{d} t-\int_0^x f(t) \mathrm{d} t,
$$
求 $f(x)$ 及 $f(x)$ 的极值.

设可微函数 $f(x, y)$ 在点 $(x, y)$ 处沿 $\boldsymbol{l}_1=(-1,0)$ 与 $\boldsymbol{l}_2=(0,-1)$ 的方向导数分别 为 $2 a x-3 x^2$ 与 $2 a y-3 y^2(a>0)$, 且 $f(0,0)=0$, 若 $f(x, y)$ 有极小值 $-8$, 求 $a$ 的值及 $f(x, y)$ 的表达式.

设 $D=\{(x, y)|| x|+| y \mid \leqslant 1\}, L$ 为 $D$ 的边界, 取逆时针方向, 若 $f(t)$ 连续, $g(t)$ 有一阶连续导数, 计算积分
$$
I=\oint_L\left[f\left(x^2+y^2\right)+g(x+y)\right](x \mathrm{~d} x+y \mathrm{~d} y) .
$$

设二次型 $f\left(x_1, x_2, x_3\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}\left(\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}\right)$ 在正交变换 $\boldsymbol{x}=\boldsymbol{Q} \boldsymbol{y}$ 下的标准形为 $y_2^2+2 y_3^2$, 其中 $\boldsymbol{Q}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}1 & 0 & a \\ 0 & b & 0 \\ c & 0 & 1\end{array}\right)(b>0, c>0)$.
(I) 求 $a, b, c$ 的值及矩阵 $\boldsymbol{A}$;
(II) 求一个可逆线性变换, 将二次型 $\boldsymbol{x}^{\mathrm{T}}\left(\boldsymbol{A}+\boldsymbol{A}^*\right) \boldsymbol{x}$ 化为规范形, 其中 $\boldsymbol{A}^*$ 为 $\boldsymbol{A}$ 的伴随 矩阵.

设二维随机变量 $\left(X_1, X_2\right) \sim N(0,0 ; 1,1 ; 0)$. 记 $X=\max \left\{X_1, X_2\right\}, Y=\min \left\{X_1\right.$, $\left.X_2\right\}, Z=X-Y$.
(I) 求 $Z$ 的概率密度 $f_Z(z)$ 和 $E Z$;
(II) 求二维随机变量 $(X, Y)$ 的分布函数.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。