清空
下载
撤销
重做
查看原题
设 $D=\{(x, y)|| x|+| y \mid \leqslant 1\}, L$ 为 $D$ 的边界, 取逆时针方向, 若 $f(t)$ 连续, $g(t)$ 有一阶连续导数, 计算积分
$$
I=\oint_L\left[f\left(x^2+y^2\right)+g(x+y)\right](x \mathrm{~d} x+y \mathrm{~d} y) .
$$
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒