科数网
题号:2977 题型:解答题 来源:李林考研数学考前冲刺模拟卷1(数学一)
设 $D=\{(x, y)|| x|+| y \mid \leqslant 1\}, L$ 为 $D$ 的边界, 取逆时针方向, 若 $f(t)$ 连续, $g(t)$ 有一阶连续导数, 计算积分
$$
I=\oint_L\left[f\left(x^2+y^2\right)+g(x+y)\right](x \mathrm{~d} x+y \mathrm{~d} y) .
$$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$
0 人点赞
227 次查看
白板
加入试卷
答案:
解析:
答案与解析:
答案仅限会员可见
微信内自动登录
或
手机登录
或
微信扫码注册登录
点击我要
开通VIP