设 $f(x)$ 在 $[0,1]$ 上可导, 且 $f^{\prime}(x) < 0$, 则下列结论正确的是
(1) 当 $0 < t < 1$ 时, $\int_0^t f(x) \mathrm{d} x < \int_0^1 t f(x) \mathrm{d} x$.
(2) 当 $0 < t < 1$ 时, $\int_0^t f(x) \mathrm{d} x>\int_0^1 t f(x) \mathrm{d} x$.
(3) 当 $x \geqslant 0$ 时, $\int_0^x x f(t) \mathrm{d} t \geqslant 2 \int_0^x t f(t) \mathrm{d} t$.
(4) 当 $x \geqslant 0$ 时, $\int_0^x x f(t) \mathrm{d} t \leqslant 2 \int_0^x t f(t) \mathrm{d} t$.
$\text{A.}$ (1) (4).
$\text{B.}$ (2) (3).
$\text{C.}$ (2) (4).
$\text{D.}$ (1) (3).