选择2试卷具体名称

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 3 题 ),每题只有一个选项正确
设曲线积分 $\int_{L}\left[f(x)-e^{x}\right] \sin y d x-f(x) \cos y d y$ 与路径无关, 其中 $f(x)$ 具有一阶连续导数, 且 $f(0)=0$, 则 $f(x)$ 等于
$\text{A.}$ $\frac{e^{-x}-e^{x}}{2}$ $\text{B.}$ $\frac{e^{x}-e^{-x}}{2}$ $\text{C.}$ $\frac{e^{x}+e^{-x}}{2}-1$ $\text{D.}$ $1-\frac{e^{x}+e^{-x}}{2}$

设函数 $f(x, y)$ 连续, 则累次积分 $\int_0^1 \mathrm{~d} x \int_{x-1}^{\sqrt{x-x^2}} f(x, y) \mathrm{d} y$ 等于
$\text{A.}$ $\int_{-1}^1 {~d} y \int_0^{y+1} f(x, y) {d} x+\int_0^{\frac{1}{2}} {~d} y \int_0^{\frac{1}{2}-\sqrt{\frac{1}{4}-y^2}} {~d} x$ $\text{B.}$ $\int_{-1}^1 {~d} y \int_0^{y+1} f(x, y) {d} x+\int_0^{\frac{1}{2}} {~d} y \int_0^{\frac{1}{2}+\sqrt{\frac{1}{4}-y^2}} {~d} x$ $\text{C.}$ $\int_{-\frac{\pi}{2}}^0 {~d} \theta \int_0^{\frac{1}{\cos \theta-\sin \theta}} f(r \cos \theta, r \sin \theta) r {~d} r+\int_0^{\frac{\pi}{2}} {~d} \theta \int_0^{\cos \theta} f(r \cos \theta, r \sin \theta) r {~d} r$ $\text{D.}$ $\int_{-\frac{\pi}{2}}^0 \mathrm{~d} \theta \int_0^{\frac{1}{\cos \theta+\sin \theta}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r+\int_0^{\frac{\pi}{2}} {~d} \theta \int_0^{\sin \theta} f(r \cos \theta, r \sin \theta) r {~d} r$

曲线 $f(x)=\int_x^{\sqrt{3}} x \sin t^2 \mathrm{~d} t$ 与直线 $x=0, x=\sqrt{3}, y=0$ 所围平面图形绕 $y$ 轴旋转一周所形成的 旋转体的体积为
$\text{A.}$ $\frac{1}{3} \pi \sin 3-\pi \cos 3$. $\text{B.}$ $-\frac{1}{3} \pi \sin 3-\pi \cos 3$. $\text{C.}$ $\frac{2}{3} \pi \sin 3-2 \pi \cos 3$. $\text{D.}$ $-\pi \cos 3-\pi \sin 3$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。