科数网
题号:14244    题型:单选题    来源:曲线积分与曲面积分
下列正向闭曲线中, 使曲线积分 $\oint_I \frac{y \mathrm{~d} x-x \mathrm{~d} y}{x^2+x y+y^2}=0$ 的曲线是
$\text{A.}$ $L: x^2+y^2=1$ $\text{B.}$ $L: x^2+x y+y^2=1$ $\text{C.}$ $L:(x-1)^2+(y-1)^2=1$ $\text{D.}$ $L: x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP