科数网
题号:10855    题型:单选题    来源:李永乐武忠祥考研数学冲刺模拟试卷5
设 $M=\iint_{|x|+|y| \leqslant 1}(x+y)^3 \mathrm{~d} \sigma, N=\iint_{x^2+y^2 \leqslant 1} \cos x^2 \sin y^2 \mathrm{~d} \sigma, P=\iint_{x^2+y^2 \leqslant 1}\left(\mathrm{e}^{-x^2-y^2}-1\right) \mathrm{d} \sigma$, 则必有
$\text{A.}$ $M>N>P$. $\text{B.}$ $N>M>P$. $\text{C.}$ $M>P>N$. $\text{D.}$ $N>P>M$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP