• 试题 ID 5937


设 $f(t)=\iint_{\Sigma_t}(x+t)^2 d y d z+(y+t)^2 d z d x+(z+t)^2 d x d y$, 其中积分曲面 $\Sigma_t: x^2+y^2+z^2=t^2, t>0$, 取外侧, 则 $f^{\prime}(t)=$
A 0
B $8 \pi t^3$.
C $16 \pi t^3$.
D $32 \pi t^3$.
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见