一、单选题 (共 8 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知 $Q=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9\end{array}\right), P$ 为三阶非零矩阵, 且满足 $P Q=0$, 则
$\text{A.}$ $t=6$ 时, $P$ 的秩必为 1
$\text{B.}$ $t=6$ 时, $P$ 的秩必为 2
$\text{C.}$ $t \neq 6$ 时, $P$ 的秩必为 1
$\text{D.}$ $t \neq 6$ 时, $P$ 的秩必为 2
设 $A, B$ 都是 $n$ 阶非零矩阵,且 $A B=0$ ,则 $A$ 和 $B$ 的秩
$\text{A.}$ 必有一个等于零
$\text{B.}$ 都小于 $n$
$\text{C.}$ 一个小于 $\boldsymbol{n}$ ,一个等于 $\boldsymbol{n}$
$\text{D.}$ 都等于 $n$
设 $n(n \geq 3)$ 阶矩阵 $A=\left(\begin{array}{ccccc}1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a & a & a & \cdots & 1\end{array}\right)$, 若矩阵 $A$ 的秩为 $n-1$ ,则 $a$ 必为
$\text{A.}$ 1
$\text{B.}$ $\frac{1}{1-n}$
$\text{C.}$ -1
$\text{D.}$ $\frac{1}{n-1}$
设 $A$ 是 $m \times n$ 矩阵, $B$ 是 $n \times m$ 矩阵,则
$\text{A.}$ 当 $m>n$ 时,必有行列式 $|A B| \neq 0$
$\text{B.}$ 当 $m>n$ 时,必有行列式 $|A B|=0$
$\text{C.}$ 当 $n>m$ 时,必有行列式 $|A B| \neq 0$
$\text{D.}$ 当 $n>m$ 时,必有行列式 $|A B|=0$
设 $A$ 为 $n$ 阶实矩阵, $A^T$ 是 $A$ 的转置矩阵,则对于线性方程组 $(I): A x=0$ 和 $(I I): x^T A x=0$ ,必有
$\text{A.}$ $(I I)$ 的解都是 $(I)$ 的解, $(I)$ 的解也是 $(I I)$
$\text{B.}$ $(I I)$ 的解都是 $(I)$ 的解,但 $(I)$ 解不是 $(I I)$ 的解
$\text{C.}$ $(I)$ 解不是 $(I I)$ 的解, $(I I)$ 的解也不是 $(I)$ 的解
$\text{D.}$ $(I)$ 解是 $(I I)$ 的解,但 $(I I)$ 的解不是 $(I)$ 的解
设三阶矩阵 $A=\left(\begin{array}{lll}a & b & b \\ b & a & b \\ b & b & a\end{array}\right)$ ,若 $A$ 的伴随矩阵的秩等于1,则必有
$\text{A.}$ $a=b$ 或 $a+2 b=0$
$\text{B.}$ $a=b$ 或 $a+2 b \neq 0$
$\text{C.}$ $a \neq b$ 且 $a+2 b=0$
$\text{D.}$ $a \neq b$ 且 $a+2 b \neq 0$
设 $A$ 是 3 阶方阵,将 $A$ 的第 1 列与第 2 列交换得 $B$ ,再把 $B$ 的第 2 列加到第 3 列得 $C$ ,则满足 $A Q=C$ 的可逆矩阵 $Q$ 为
$\text{A.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$
$\text{B.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$
$\text{C.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$
$\text{D.}$ $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
设 $A$ 为 $m \times n$ 型矩阵, $B$ 为 $n \times m$ 型矩阵, $E$ 为 $m$ 阶单位矩阵. 若 $A B=E$ ,则
$\text{A.}$ 秩 $r(A)=m$ ,秩 $r(B)=m$
$\text{B.}$ 秩 $r(A)=m$ ,秩 $r(B)=n$
$\text{C.}$ 秩 $r(A)=n$ ,秩 $r(B)=m$
$\text{D.}$ 秩 $r(A)=n$ ,秩 $r(B)=n$
二、判断题 (共 2 题,每小题 5 分,共 20 分)
设 $f(x)=a_n x^n+\cdots+a_1 x+a_0$ 为整系数多项式, $a_n \neq 0$, 若有理数 $\frac{q}{p}$ 是 $f(x)$ 的根, 则必有 $p \mid a_0$, 且 $q \mid a_n$, 其中 $p, q$ 为互素的整数.
$\text{A.}$ 正确
$\text{B.}$ 错误
若 $A$ 和 $B$ 都是 $n$ 阶非零方阵,且 $A B=0$ ,则 $A$ 的秩必小于 $n$.
$\text{A.}$ 正确
$\text{B.}$ 错误
三、填空题 (共 14 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\boldsymbol{A}=\left(\begin{array}{cccc}a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{n} \\ a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{n}\end{array}\right)$, 其中 $a_{i} \neq 0, b_{i} \neq 0(i=1,2, \cdots, n)$, 则矩阵 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=$
设 $\boldsymbol{A}$ 是 $4 \times 3$ 矩阵, 且 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=2$, 而 $\boldsymbol{B}=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3\end{array}\right)$, 则 $r(\boldsymbol{A} \boldsymbol{B})= $.
设线性空间 $V$ 上的线性变换 $\sigma$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 $\left(\begin{array}{ccc}1 & 2 & 0 \\ 3 & 0 & -1 \\ 0 & 3 & 2\end{array}\right)$, 则 $\sigma$ 在基 $\varepsilon_1+\varepsilon_2+\varepsilon_3$, $\varepsilon_2+\varepsilon_3, \varepsilon_3$ 下的矩阵为
设矩阵 $A$ 的初等因子组为 $\lambda^2,(\lambda-1)^2,(\lambda-1)^2, \lambda+1,(\lambda+1)^3$, 则 $A$ 的最小多项式为
设 4 阶方阵 $A$ 的秩为 2 ,则其伴随矩阵 $A^*$ 的秩为
已知矩阵 $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right) , B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$, 且矩阵 $X$满足 $A X A+B X B=A X B+B X A+E$ ,其中 $E$ 是 3 阶单位阵,求 $\boldsymbol{X}$.
设 $A=\left(\begin{array}{cccc}k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k\end{array}\right)$ ,且秩 $(A)=3$ ,则 $k=$
设 $n$ 维向量 $\alpha=(a, 0, \cdots, 0, a)^T, a < 0 ; E$ 为 $\boldsymbol{n}$ 阶单位矩阵,矩阵 $A=E-\alpha \alpha^T, B=E+\frac{1}{a} \alpha \alpha^T$ ,其中 $A$的逆矩阵为 $B$ ,则 $a=$
设矩阵 $A=\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right) , E$ 为二阶单位矩阵,矩阵 $B$ 满足 $B A=B+2 E$ ,则 $|B|=$
设矩阵 $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ ,则 $A^3$ 的秩为
设矩阵 $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ ,则 $A^3$ 的秩为
设 3 阶矩阵 $A$ 的特征值为 $1,2,2, E$ 为 3 阶单位矩阵,则 $\left|4 A^{-1}-E\right|=$
设三阶矩阵 $\boldsymbol{A}$ 的特征值互不相同,且行列式 $|\boldsymbol{A}|=0$ ,则 $A$ 的秩为
设 $\alpha$ 为三维单位列向量, $\boldsymbol{E}$ 为三阶单位矩阵,则矩阵 $\boldsymbol{E}-\boldsymbol{\alpha} \boldsymbol{\alpha}^T$ 的秩为
四、解答题 ( 共 8 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $M_2(k)$ 是数域 $k$ 上所有 2 -级方阵构成的线性空间。
(i). 证明: 矩阵的转置是 $M_2(k)$ 上的线性变换。
(ii). 求出转置线性变换在基本矩阵 $E_{i j}$ 构成的基下的矩阵。
定义在 $V=\mathbb{R}^3$ 上的运算
$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_V=x_1 y_1+x_2 y_2+\left(x_2+x_3\right)\left(y_2+y_3\right)
$
其中 $\boldsymbol{x}=\left(x_1, x_2, x_3\right), \boldsymbol{y}=\left(y_1, y_2, y_3\right)$.
1. 验证 $\langle\cdot, \cdot\rangle_V$ 是 $\mathbb{R}^3$ 上的一个内积;
2. 求 $\mathbb{R}^3$ 在 $\langle\cdot, \cdot\rangle_V$ 下的一组标准正交基;
3. 求 $\boldsymbol{\beta} \in V$ 使得 $\forall \boldsymbol{x} \in V: x_1+2 x_2=\langle\boldsymbol{x}, \boldsymbol{\beta}\rangle_V$.
$T \in \mathcal{L}(V)$ 在一组基 $\varepsilon=\left(\varepsilon_1, \varepsilon_2, \varepsilon_3\right)$ 下的矩阵为
$$
T(\varepsilon)=(\varepsilon)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$
求 $V$ 所有的 $T$-不变子空间.
试给出下列命题的真伪. 若命题为真, 请给出简要证明; 若命题为假, 请举出反例.
1. $T \in \mathcal{L}(V)$. 若子空间 $W \in V$ 在 $T$ 下不变, 则其补空间 $W^{\prime}$ 在 $T$ 下也不变;
2. 定义 $T \in \mathcal{L}(V, W): T v=\langle v, \alpha\rangle \beta, \beta \in W$ 对 $\forall v \in V$ 成立, 则 $T^* w=\langle w, \beta\rangle \alpha, \alpha \in V$ 对 $\forall w \in W$成立;
3. $T \in \mathcal{L}(V)$ 是非幕零算子, 满足 $\operatorname{null} T^{n-1} \neq \operatorname{null} T^{n-2}$. 则其极小多项式为
$$
m(\lambda)=\lambda^{n-1}(\lambda-a) \quad 0 \neq a \in \mathbb{R}
$$
4. $\mathbf{A} \in \mathbb{R}^{n \times n} . \mathbf{S}_1=\mathbf{A}^{\mathrm{T}}+\mathbf{A}, \mathbf{S}_2=\mathbf{A}^{\mathrm{T}}-\mathbf{A}$. 则 $\mathbf{A}$ 是正规矩阵当且仅当 $\mathbf{S}_1 \mathbf{S}_2=\mathbf{S}_2 \mathbf{S}_1$.
5. $\mathbf{A} \in \mathbb{C}^{n \times n}$ 是正规矩阵, 则 $\mathbf{A}$ 的实部矩阵和虚部矩阵是对称矩阵.
$T \in \mathcal{L}(V)$. 有极分解 $T=S \sqrt{G}$, 其中 $S$ 是等距同构, $G=T^* T$. 证明以下条件等价:
1. $T$ 是正规算子;
2. $G S=S G$;
3. $G$ 的所有特征空间 $E(\lambda, G)$ 都是 $S$-不变的.
设 $A$ 为 $m$ 阶实对称矩阵且正定, $B$ 为 $m \times n$ 实矩阵, $B^T$ 为 $B$ 的转置矩阵,试证: $B^T A B$ 为正定矩阵的充分必要条件是 $B$ 的秩 $r(B)=n$.
设矩阵 $A$ 的伴随矩阵 $A^*=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8\end{array}\right)$ , $A B A^{-1}=B A^{-1}+3 E, E$ 为 4 阶单位矩阵,求矩阵 $B$.
设 $\alpha, \beta$ 为 3 维列向量,矩阵 $A=\alpha \alpha^T+\beta \beta^T$ ,其中 $\alpha^T, \beta^T$ 分别是 $\alpha, \beta$ 的转置. 证明:
(1) 秩 $r(A) \leq 2$;
(2) 若 $\alpha, \beta$ 线性相关,则秩 $r(A) < 2$.