一、解答题 ( 共 23 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $D=\{(x, y)|| x|+| y \mid \leqslant 1\}, L$ 为 $D$ 的边界, 取逆时针方向, 若 $f(t)$ 连续, $g(t)$ 有一阶连续导数, 计算积分
$$
I=\oint_L\left[f\left(x^2+y^2\right)+g(x+y)\right](x \mathrm{~d} x+y \mathrm{~d} y) .
$$
从点 $(0,-1)$ 引两条直线与抛物线 $y=x^2$ 相切.
(1) 求由这两条直线与抛物线 $y=x^2$ 所围成的平面图形绕 $y$ 轴旋转一周所得到的旋转体的表面积:
(2)求上述旋转体的体积
设 $u=f(r), r=\sqrt{x^2+y^2+z^2}$, 其中函数 $f$ 二阶可微, 且 $\lim _{x \rightarrow 1} \frac{f(x)-1}{x-1}=1$, 若函数 $u=f(r)$ 满足 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$, 试求 $f(r)$ 的表达式.
设区域 $D: 0 \leqslant x \leqslant 2,|y| \leqslant x$, 函数 $f(x, y)=\max _{-1 \leqslant \leqslant \leqslant 3}\left(t^2-2 x t+y^3\right)$, 计算二重积分 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y$.
计算 $\iint_{\Sigma}\left(x^2+y^2\right) \mathrm{d} S$, 其中 $\Sigma: z=\sqrt{x^2+y^2}(0 \leq z \leq 4)$.
求二重积分 $\iint_D \frac{\mathrm{d} \sigma}{\sqrt{x+y+4}}$, 其中
$$
D=\{(x, y):|x|+|y| \leq 1\} .
$$
计算三重积分 $\iiint_{\Omega} z d v$, 其中 $\Omega$ 为曲面 $z=\sqrt{2-x^2-y^2}$ 及 $z=x^2+y^2$ 所围成的闭 区域。
计算曲线积分 $\int_L\left(e^x \sin y-8 y\right) d x+\left(e^x \cos y-8\right) d y$, 其中 L 是由点 $\mathrm{A}(a, 0)$ 到点 O $(0,0)$ 的上半圆周 $x^2+y^2=a x \quad(y \geq 0, a>0)$
计算 $\iint(x+y+z) d S$, 其中曲而 $\Sigma$ 为球面 $x^2+y^2+z^2=a^2$ 上 $z \geq \boldsymbol{h}(0 < \boldsymbol{h} < \boldsymbol{a})$ 的部分
交换二次积分 $I=\int_0^{\sqrt{\pi}} \mathrm{d} x \int_x^{\sqrt{\pi}} \sin y^2 \mathrm{~d} y$ 的次序, 并且求出 $I$ 的值.
计算 $\iint_{\Sigma} x^3 \mathrm{~d} y \mathrm{~d} z+y^3 \mathrm{~d} x \mathrm{~d} z$, 其中 $\Sigma$ 为圆柱面 $x^2+y^2=R^2$ 介于平面 $z=0$ 和 $z=h$ 之间部分的外侧.
求解 $\iint_{\Sigma} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(\sqrt{x^2+y^2+z^2}\right)^3}$, 其中 $\Sigma: x^2+y^2+\frac{z^2}{2}=1$ 当中 $z \geqslant-\frac{1}{2}$ 的部分, 取外侧。
计算二重积分 $\iint_D \frac{x+y}{x^2+y^2} d x d y$, 其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 1, x+y \geq 1\right\}$ 。
抛物面 $z=x^2+y^2$ 被平面 $x+y+z=1$ 截成一椭圆, 求原点到这椭圆的最长与最短距离。
计算二重积分 $\iint_D\left|y^2-x^2\right| \mathrm{d} \sigma$ ,其中
$$
D=\{(x, y) \mid x \in[-1,1], y \in[0,2]\} .
$$
设函数 $f(x)$ 具有二阶连续导数,且
$$
f(0)=1, f^{\prime}(0)=1 \text {. }
$$
假设对任意光滑闭曲面 $\boldsymbol{\Sigma}$ ,恒有
$$
\oint_{\Sigma}\left[f^{\prime}(x)+x^2\right] \mathrm{d} y \mathrm{~d} z+(z+1) f(x) \mathrm{d} x \mathrm{~d} y=0 .
$$
试求 $f(x)$ 的表达式.
计算二重积分 $I=\iint_D x \mathrm{~d} x \mathrm{~d} y$, 其中 $D$ 由 $y=\sqrt{1-x^2}, y=\sqrt{2 x-x^2}$ 与 $x$ 轴所围成的区域.
设 $D=\left\{(x, y): x^2+y^2 \leq 1\right\}$, 实数 $\alpha, \beta$ 满足 $\alpha^2+\beta^2=1$, 计算二重积分
$$
\iint_D \frac{\mathrm{d} x \mathrm{~d} y}{\sqrt{(1-\alpha x+\beta y)^2+(\beta x+\alpha y)^2}} .
$$
设函数 $f(x, y)$ 在区域 $D: x^2+y^2 \leq 1$ 上有二阶连续 偏导数,且
$$
\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=\mathrm{e}^{-\left(x^2+y^2\right)} .
$$
计算 $\iint_D\left(x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}\right) \mathrm{d} x \mathrm{~d} y$.
计算三重积分 $I=\iiint_{\Omega} \frac{\mathrm{d} V}{\left(1+x^2+y^2+z^2\right)^2}$ ,其中 $\Omega$ 为 $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
计算三重积分 $\iiint_{\Omega} x^3 y^2 z d V , \Omega$ 为马鞍面 $z=x y$ 与平面 $y=x, x=1, z=0$ 所包 围的空间区域。
求二重积分 $I=\iint_D\left|x^2+y^2-4\right| d x d y$ ,其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 16\right\}$ 。
设 $D$ 是由 $y=x^3, y=-c^3, x=-c(c \neq 0)$ 围成的积分区域,且 $f(x)$ 是 $\mathbb{R}$ 上的连续函数, 求二重积分
$$
\iint_D x(1+y f(1+|\sin x|+\cos y)) \mathrm{d} x \mathrm{~d} y .
$$