设 $u=f(r), r=\sqrt{x^2+y^2+z^2}$, 其中函数 $f$ 二阶可微, 且 $\lim _{x \rightarrow 1} \frac{f(x)-1}{x-1}=1$, 若函数 $u=f(r)$ 满足 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$, 试求 $f(r)$ 的表达式.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$