一、单选题 (共 20 题,每小题 5 分,共 50 分,每题只有一个选项正确)
$\lim _{x \rightarrow 0} \frac{\int_0^{x^2} \sin t^2 \mathrm{~d} t}{x^6}=$
$\text{A.}$ $\frac{1}{6}$
$\text{B.}$ $\frac{1}{2}$
$\text{C.}$ $\frac{1}{3}$
$\text{D.}$ $1$
设在 $[0,1)$ 上 $f(x)$ 二阶可导,且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $f^{\prime}(0) < f^{\prime}(1) < f(1)-f(0)$
$\text{B.}$ $ f^{\prime}(0) < f(1)-f(0) < f^{\prime}(1)$
$\text{C.}$ $f^{\prime}(1) < f^{\prime}(0) < f(1)-f(0)$
$\text{D.}$ $f(1)-f(0) < f^{\prime}(1) < f^{\prime}(0)$
设 $y=f(x)$ 是微分方程 $y^{\prime \prime}-2 y^{\prime}+4 y=-e^{\sin x}$ 的一个解, 若 $f\left(x_0\right)>0, f^{\prime}\left(x_0\right)=0$, 则函数 $f(x)$ 在点 $x_0$
$\text{A.}$ 取得极大值
$\text{B.}$ 某邻域内单调增加.
$\text{C.}$ 某邻域内单调减少.
$\text{D.}$ 取得极小值
设正项级数 $\sum_{n=1}^{\infty} \ln \left(1+a_n\right)$ 收敛, 则级数 $\sum_{n=1}^{\infty}(-1)^n \sqrt{a_n a_{n+1}}$ 的敛散性为
$\text{A.}$ 条件收敛
$\text{B.}$ 绝对收敛
$\text{C.}$ 发散
$\text{D.}$ 无法判断
设 $f(x)$ 满足微分方程 $f^{\prime \prime}(x)+x f^{\prime}(x)=\ln (1+x)-\frac{\arctan x}{x+1}$, 且 $f(x)$ 有驻点 $x=x_0>0$, 则
$\text{A.}$ $x_0$ 不是极值点.
$\text{B.}$ $x_0$ 是极大值点.
$\text{C.}$ $x_0$ 是极小值点.
$\text{D.}$ $x_0$ 是否是极值点无法判断.
函数 $y=3 x^3-x$ 在区间 $[0,1]$ 上的最小值是:
$\text{A.}$ 0
$\text{B.}$ 没有
$\text{C.}$ 2
$\text{D.}$ $-2 / 9$
设函数 $f(x)$ 的二阶导函数 $f^{\prime \prime}(x)$ 的图形如右图所示, 则曲线 $y=$ $f(x)$ 拐点个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
“函数 $f(x)$ 在 $x_0$ 处可导” 是 “函数 $f(x)$ 在 $x_0$ 处连续” 的
$\text{A.}$ 充分且必要条件
$\text{B.}$ 必要非充分条件
$\text{C.}$ 充分非必要条件
$\text{D.}$ 既非充分又非必要条件
曲线 $y=\sqrt{x^2-2 x+4}+x$ 的渐近线的条数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设函数 $y(x)=\lim _{t \rightarrow 0}\left[1-\frac{\ln (1-t)}{x^2}\right]^{\frac{x}{\operatorname{lin} t}}$, 下列关于曲线 $y=y(x)$ 的渐近线的说法中, 正确的是
(1) 该曲线无渐近线.
(2) 该曲线有铅直渐近线.
(3) 该曲线有水平渐近线.
(4) 该曲线有斜渐近线.
$\text{A.}$ (2).
$\text{B.}$ (3).
$\text{C.}$ (2)(3).
$\text{D.}$ (2)(4).
若 $f(x)=\int_0^{2 x} t \sin (x-t)^2 \mathrm{~d} t$, 则 $f^{\prime \prime}\left(\sqrt{\frac{\pi}{2}}\right)=$
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
若 $z=z(x, y)$ 可微, 且满足方程 $y \frac{\partial z}{\partial x}+(2 x+1) \frac{\partial z}{\partial y}=0$, 则 $z(x, y)$ 的等值线是
$\text{A.}$ 椭圆曲线族.
$\text{B.}$ 双曲线族.
$\text{C.}$ 拋物线族.
$\text{D.}$ 直线族.
若函数 $f$ 在 $(-\infty,+\infty)$ 内 $f^{\prime \prime}(x)>0$, 且 $\lim _{x \rightarrow+\infty} f(x)=0$, 则在下列四项函数性质:
(1) $\lim _{x \rightarrow+\infty} f^{\prime}(x)=0$;
(2) $f^{\prime}(x) < 0$;
(3) $f(x)>0$;
(4) $\lim _{x \rightarrow-\infty} f(x)=+\infty$ 中
$\text{A.}$ $f$ 仅有第 (1) 项性质.
$\text{B.}$ $f$ 仅有第 (1), (2) 两项性质.
$\text{C.}$ $f$ 仅有第 (1), (2), (3) 三项性质.
$\text{D.}$ $f$ 具有全部四项性质.
已知函数 $f(x)$ 可微, 则 $f(x)=$
$\text{A.}$ $\int \mathrm{d} f(x) \quad$
$\text{B.}$ $\mathrm{d}\left(\int f(x) \mathrm{d} x\right)$
$\text{C.}$ $\left(\int f(x) \mathrm{d} x\right)^{\prime}$
$\text{D.}$ $\int f^{\prime}(x) \mathrm{d} x$
设 $f(x)$ 满足 $f^{\prime}(0)=0, f^{\prime}(x)+[f(x)]^3=x^2$, 则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值.
$\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值.
$\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点.
$\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.
点 $P(1,0,1)$ 到直线 $\left\{\begin{array}{l}x-y-z+1=0, \\ x+y-3 z=0\end{array}\right.$ 的距离 $d=$ ( )
$\text{A.}$ $\frac{\sqrt{2}}{3}$.
$\text{B.}$ $\frac{\sqrt{3}}{2}$.
$\text{C.}$ $\sqrt{2}$.
$\text{D.}$ $\sqrt{3}$.
设函数 $f(x, y)$ 连续, $f(0,0)=0$, 又设 $F(x, y)=|x-y| f(x, y)$, 则 $F(x, y)$ 在点 $(0,0)$处
$\text{A.}$ 连续; 但不可微.
$\text{B.}$ 连续, 但偏导数不存在.
$\text{C.}$ 偏导数存在, 但不可微.
$\text{D.}$ 可微.
若 $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-x^3-2 y^3}{1-\cos \sqrt{x^2+y^2}}=2$, 则下列结论不正确的是
$\text{A.}$ $f(x, y)$ 在 $(0,0)$ 点连续.
$\text{B.}$ $f_x^{\prime}(0,0)=f_y^{\prime}(0,0)=0$.
$\text{C.}$ $f(x, y)$ 在 $(0,0)$ 处可微.
$\text{D.}$ $f(x, y)$ 在点 $(0,0)$ 处取极大值.
函数 $y=\frac{(x+1)^2}{x}$ 的图形有 $n$ 条渐近线, 则 $n=$ ( )
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设函数 $y=y(x)$ 由方程 $\ln \left(x^2+y^2\right)=\arctan \frac{y}{x}$ 确定, 且满足 $y(1)=0$, 则 $y^{\prime \prime}(1)=$ ( )
$\text{A.}$ 0
$\text{B.}$ $\frac{1}{2}$.
$\text{C.}$ 10
$\text{D.}$ 20
二、填空题 (共 27 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
由方程 $y=\cos (x y)-x$ 所确定的隐函数为 $y=f(x)$, 求导数 $f^{\prime}(x)$.
设 $a>0, f(x)$ 在 $[0,2 a]$ 上连续, 且 $f(0)=f(2 a)$, 试证: 存在 $\xi \in[0, a]$, 使 $f(\xi)=f(\xi+a)$.
$\lim _{t \rightarrow 0^{+}} \frac{1}{t^3} \int_0^{\frac{\pi}{4}} \mathrm{~d} \theta \int_0^{\frac{t}{\cos \theta}} \frac{\sin \left(r^2 \sin \theta \cos \theta\right)}{\sin \theta} \mathrm{d} r=$
曲线 $\left\{\begin{array}{l}x=\arctan t \\ y=\ln \sqrt{1+t^2}\end{array}\right.$ 对应于 $t=1$ 处的法线方程为
曲线 $y=x \sin x+2 \cos x\left(-\frac{\pi}{2} < x < 2 \pi\right)$ 的拐点是
设 $a_n=\frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \mathrm{~d} x$, 则 $\lim _{n \rightarrow \infty} n a_n=$
$y=x \ln \left(\mathrm{e}+\frac{1}{x^2}\right)$ 的斜渐近线为。
设 $f(x y)=x^2+2 y^2$, 求其在 $(0,1)$ 处的最大方向导数
设函数 $y(x)$ 是微分方程 $y^{\prime}+\frac{1}{2 \sqrt{x}} y=2+\sqrt{x}$ 满足条件 $y(1)=3$ 的解, 求 $y(x)$ 的渐进线.
若 $f(x)$ 可导, $y=f\left(e^x\right)$, 则 $d y=$
函数 $f(x)=\frac{1}{1-x}$, 则 $f^{(n)}(0)=$
曲线 $y=x^2-1$ 在其顶点处的曲率 $K$ 是
设函数 $f(x, y)$ 可微. 若已知 $f$ 在点 $P\left(x_0, y_0\right)$ 处沿 $\boldsymbol{l}_1=\boldsymbol{i}-\boldsymbol{j}$ 和 $\boldsymbol{l}_2=\boldsymbol{i}+\boldsymbol{j}$ 的方向导数分别为 $\frac{\partial f(P)}{\partial \boldsymbol{l}_1}=m_1$ 和 $\frac{\partial f(P)}{\partial \boldsymbol{l}_2}=m_2$, 且 $m_1^2+m_2^2 \neq 0$, 则 $f(x, y)$ 在点 $P$ 处变化最快的方向是
设 $y=\mathrm{e}^{\sqrt{\cos x}}$, 则 $\mathrm{d} y=$
曲线 $\left\{\begin{array}{l}x=\int_0^{1-t} \mathrm{e}^{-u^2} \mathrm{~d} u \\ y=t^2 \ln \left(2-t^2\right)\end{array}\right.$ 在点 $(0,0)$ 处的切线方程为
设 $y=\sin ^2x$, 则 $y^{(8)}(0)=$ ________ .
曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right)(x>0)$ 的渐近线方程为
已知可微函数 $f(x, y)$ 满足 $f(t x, t y)=t f(x, y), t>0$, 且 $f_1(1,-2)=4$, 则曲面 $z=$ $f(x, y)$ 在点 $P_0(1,-2,2)$ 处的切平面方程为
已知函数 $f(x)=\frac{x+2}{(1-x)^4}$, 则 $f^{(5)}(0)=$
设 $n \geqslant 1$ 为自然数, $f(x)=\left(x^3-1\right)^n(\arctan x)^2$, 则 $f^{(n)}(1)=$