单选题 (共 3 题 ),每题只有一个选项正确
$\lim _{x \rightarrow 0} \frac{\int_0^{x^2} \sin t^2 \mathrm{~d} t}{x^6}=$
$\text{A.}$ $\frac{1}{6}$
$\text{B.}$ $\frac{1}{2}$
$\text{C.}$ $\frac{1}{3}$
$\text{D.}$ $1$
设在 $[0,1)$ 上 $f(x)$ 二阶可导,且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $f^{\prime}(0) < f^{\prime}(1) < f(1)-f(0)$
$\text{B.}$ $ f^{\prime}(0) < f(1)-f(0) < f^{\prime}(1)$
$\text{C.}$ $f^{\prime}(1) < f^{\prime}(0) < f(1)-f(0)$
$\text{D.}$ $f(1)-f(0) < f^{\prime}(1) < f^{\prime}(0)$
设 $y=f(x)$ 是微分方程 $y^{\prime \prime}-2 y^{\prime}+4 y=-e^{\sin x}$ 的一个解, 若 $f\left(x_0\right)>0, f^{\prime}\left(x_0\right)=0$, 则函数 $f(x)$ 在点 $x_0$
$\text{A.}$ 取得极大值
$\text{B.}$ 某邻域内单调增加.
$\text{C.}$ 某邻域内单调减少.
$\text{D.}$ 取得极小值