设在 $[0,1)$ 上 $f(x)$ 二阶可导,且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $f^{\prime}(0) < f^{\prime}(1) < f(1)-f(0)$
$\text{B.}$ $ f^{\prime}(0) < f(1)-f(0) < f^{\prime}(1)$
$\text{C.}$ $f^{\prime}(1) < f^{\prime}(0) < f(1)-f(0)$
$\text{D.}$ $f(1)-f(0) < f^{\prime}(1) < f^{\prime}(0)$