一、单选题 (共 11 题,每小题 5 分,共 50 分,每题只有一个选项正确)
关于无穷小量, 哪一个是正确的
$\text{A.}$ 无穷小量是以零为极限的函数
$\text{B.}$ 无穷小量就是数 0
$\text{C.}$ 无穷小量就是一个很小的数
$\text{D.}$ 0 不是无穷小
下列极限正确的是
$\text{A.}$ $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=1$
$\text{B.}$ $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}=1$
$\text{C.}$ $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=1$
$\text{D.}$ $\lim _{x \rightarrow \infty} \frac{\sin 2 x}{x}=1$
极限 $\lim _{x \rightarrow 0} \frac{e^{x^2}-1}{\cos x-1}=$
$\text{A.}$ 2
$\text{B.}$ $\infty$
$\text{C.}$ 0
$\text{D.}$ $-2$
设 $y=e^{\sin x}$, 则微分 $\mathrm{d} y= $
$\text{A.}$ $e^{\sin x} \mathrm{~d} x$
$\text{B.}$ $e^{\sin x} d \sin x$
$\text{C.}$ $e^{\sin x}$
$\text{D.}$ $e^{\sin x} \cos x$
设 $f(x)=\left\{\begin{array}{l}\frac{2}{3} x^3, x \leq 1 \\ x^2, x>1\end{array}\right.$, 则 $f(x)$ 在 $x=1$ 处的
$\text{A.}$ 左、右导数都存在
$\text{B.}$ 左导数存在, 右导数不存在
$\text{C.}$ 左导数不存在, 右导数存在
$\text{D.}$ 左、右导数都不存在
方程 $\arcsin x=k x$ 在 $x \in[0,1]$ 只有一个解, 那么 $k$ 的取值范围是
$\text{A.}$ $\left(1, \frac{\pi}{2}\right]$
$\text{B.}$ $k \geqslant \frac{\pi}{2}$ 或者 $k < 1$
$\text{C.}$ $k>\frac{\pi}{2}$ 或者 $k \leqslant 1$
$\text{D.}$ $k=1$
下列有关定义在 $(-\infty,+\infty)$ 上的可导函数 $f(x)$ 的说法正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow+\infty} f(x)=A$, 并且 $\exists x_0 \in(0,+\infty)$, 使得 $f\left(x_0\right)>A, \exists x_1 \in(0,+\infty)$ 并且 $x_0 \neq x_1$, 使得 $f\left(x_1\right) < A$, 那么 $f(x)$ 在 $(0,+\infty)$ 内有最大值和最小值。
$\text{B.}$ 若 $f(x)$ 是奇函数, 并且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=A(\neq 0)$, 则 $f(x)$ 的斜渐近线条数一定是偶数。
$\text{C.}$ 若 $f^{\prime}(x)=f(x)+\int_0^x f(t) \mathrm{d} t$ 并且 $f(0)=1$, 则 $f^{\prime \prime}(0)=2$
$\text{D.}$ 令 $g(x)=\left\{\begin{array}{l}\frac{f(x)-f\left(x_0\right)}{x-x_0}, x \neq x_0 \\ f^{\prime}\left(x_0\right), x=x_0\end{array}\right.$, 其中 $x_0 \in(-\infty,+\infty)$, 则 $g^{\prime}\left(x_0\right)$ 存在
函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点
$\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点
$\text{C.}$ $x=\pm 1$ 均是第一类间断点
$\text{D.}$ $x=\pm 1$ 均是第二类间断点
设函数 $f(x)$ 在 $x=0$ 处连续, 下列命题错误的是
$\text{A.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f(0)=0$.
$\text{B.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ 存在, 则 $f(0)=0$.
$\text{C.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.
$\text{D.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.
曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right) \quad(x>0)$ 的渐近线条数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设函数 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{1+|x|^{3 n}}$, 则 $f(x)$ 在 $(-\infty,+\infty)$ 内
$\text{A.}$ 处处可导.
$\text{B.}$ 恰有一个不可导点.
$\text{C.}$ 恰有两个不可导点.
$\text{D.}$ 至少有三个不可导点.
二、填空题 (共 8 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
方程 $\sum_{i=1}^{100} \frac{1}{x-i}=0$ 实根的个数为
极限 $\lim _{x \rightarrow 1} \frac{x^3-1}{x-1}=$
若 $x^2-a \sin x$ 和 $x$ 是 $x \rightarrow 0$ 时的等价无穷小, 则 $a=$.
设 $f(x)$ 在 $x=0$ 处可导, 且 $f(0)=0, f^{\prime}(0)=9$, 则 $\lim _{x \rightarrow 0} \frac{f(x)}{3 x}=$
曲线 $y=\arctan \frac{1}{x}$ 在点 $\left(1, \frac{\pi}{4}\right)$ 的切线方程为
设 $\left\{\begin{array}{c}x=t e^t, \\ y=\sin 2 t,\end{array}\right.$ 则导数 $\left.\frac{d y}{d x}\right|_{t=0}=$
设 $f(x)=(x-1)(x-3)^3(x-5)^5(x-7)^7$, 则 $f^{\prime \prime \prime \prime}(3)=$
设 $f(x)$ 在 $[0,+\infty)$ 上可导, 且 $f(0)=0$, 其反函数为 $g(x)$, 满足
$$
\int_0^{f(x)} g(t) \mathrm{d} t=(x-1) \mathrm{e}^x+x^2+1,
$$
则 $f(x)$ 的表达式为 $f(x)=$
三、解答题 ( 共 19 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
已知曲线的极坐标方程是 $r=1-\cos \theta$ ,求该曲线上对应于 $\theta=\frac{\pi}{6}$ 处的切线与法线的直角坐标方程.
已知 $y=1+x e^{x y}$, 求 $\left.y^{\prime}\right|_{x=0}$ 及 $\left.y^{\prime \prime}\right|_{x=0}$.
已知 $\left\{\begin{array}{l}x=\ln \left(1+t^2\right) \\ y=\arctan t\end{array}\right.$ ,求 $\frac{d y}{d x}$ 及 $\frac{d^2 y}{d x^2}$.
设函数 $y=\frac{3 x+2}{2 x^2+x-3}$ ,求 $y^{(n)}(0)$.
一长为 $L$ 米的木梯斜靠在倾角为 $\frac{\pi}{3}$ 的光滑斜坡上,A点位于斜坡底部,木梯的顶部距 离 $A$ 点 $h$ 米,底部距离 $A$ 点 $d$ 米,受重力作用木梯的顶部以 $a \mathrm{~m} / \mathrm{s}$ 的速度沿斜坡下滑,底部水平向右运动. 问: 当木梯的顶部和 底部与 $A$ 点的距离相等时,底部移动的水平速度为多少?
设函数 $f(x)=\left\{\begin{array}{l}\mathrm{e}^x(\sin x+\cos x), x \leq 0, \\ a x^2+b x+c, \quad x>0,\end{array}\right.$ 试确定常数 $a, b, c$ 的值使得 $f^{\prime \prime}(x)$ 在 $(-\infty,+\infty)$ 内处处存在.
已知等式 $\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}+a^2 y=0$ ,对其作变量代 换 $x=\sin t$ ,计算所得 $y$ 关于 $t$ 的导数的等式.
设 $f(x)$ 是 $[0,1]$ 上的连续函数, 证明: 存在 $c \in(0,1)$
使得 $\int_0^c f(x) \mathrm{d} x=(1-c) f(c)$.
求实系数二次多项式 $p(x)$ ,使得
$$
\left|p(x)+\frac{1}{x-3}\right| < 0.02, \forall x \in[-1,1] \text {. }
$$
设 $f(x)$ 是 $R$ 上的一个有界连续函数,且满足
$$
\lim _{h \rightarrow 0} \sup _{x \in R}|f(x+h)-2 f(x)+f(x+h)|=0 \text {. }
$$
证明: $f(x)$ 在 $R$ 上一致连续.
设函数 $f(x)$ 在 $[a, b]$ 上连续.
(1) 证明存在 $\xi \in(a, b)$, 使得 $\int_a^{\xi} f(x) \mathrm{d} x=(b-\xi) f(\xi)$;
(2) 如果 $f(x)$ 在 $(a, b)$ 内取得最大值和最小值, 证明存在 $\eta \in(a, b)$, 使得
$$
\int_a^\eta f(x) \mathrm{d} x=(\eta-a) f(\eta) .
$$
已知 $y(x)$ 由 $x=\int_1^{y-x} \sin ^2\left(\frac{\pi}{4} t\right) \mathrm{d} t$ 确定,求 $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$.
已知 $f(x)$ 在 $[0,2]$ 上二阶可导,且
$$
\max _{0 \leq x \leq 2}\left\{|f(x)|,\left|f^{\prime \prime}(x)\right|\right\} \leq 1 ,
$$
证明: 对任意的 $x \in[0,2],\left|f^{\prime}(x)\right| \leq \mathbf{2}$.
证明: $I(x)=\int_0^{+\infty} \frac{\sin (x y)}{y} d y$ 在 $(0,+\infty)$ 上内闭一致 收敛.
求极限: $\lim _{x \rightarrow 0^{+}} \frac{x^x-(\sin x)^x}{x^3}$
求极限: $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$
求极限: $ \lim _{x \rightarrow 0}\left[\frac{\sin (\sin x)}{\sin (\arctan x)}\right]^{\frac{1}{1-\cos x}}$
求 $$\lim _{x \rightarrow 0} \frac{\left(\int_0^x e^{t^2} d t\right)^2}{\int_0^x t e^{2 t^2} d t}$$
设 $f(x)$ 二阶可导并且 $f(x)$ 具有反函数 $f^{-1}(x), f(0)=0, f^{\prime}(0)=1$, 求 $\lim _{x \rightarrow 0}\left[\frac{1}{f(x)}-\frac{1}{f^{-1}(x)}\right]$