查看原题
设函数 $f(x, y)$ 可微. 若已知 $f$ 在点 $P\left(x_0, y_0\right)$ 处沿 $\boldsymbol{l}_1=\boldsymbol{i}-\boldsymbol{j}$ 和 $\boldsymbol{l}_2=\boldsymbol{i}+\boldsymbol{j}$ 的方向导数分别为 $\frac{\partial f(P)}{\partial \boldsymbol{l}_1}=m_1$ 和 $\frac{\partial f(P)}{\partial \boldsymbol{l}_2}=m_2$, 且 $m_1^2+m_2^2 \neq 0$, 则 $f(x, y)$ 在点 $P$ 处变化最快的方向是
                        
不再提醒