单选题 (共 3 题 ),每题只有一个选项正确
设 $I_k=\int_0^{k \pi} e^{x^2} \sin x \mathrm{~d} x(k=1,2,3)$ ,则有
$\text{A.}$ $I_1 < I_2 < I_3$
$\text{B.}$ $I_3 < I_2 < I_1$
$\text{C.}$ $I_2 < I_3 < I_1$
$\text{D.}$ $I_2 < I_1 < I_3$
设三个积分分别为
$$
\begin{gathered}
\mathrm{M}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos ^4 x \mathrm{~d} x, \\
N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^3 x+\cos ^4 x\right) \mathrm{d} x, \\
P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^2 \sin ^3 x-\cos ^4 x\right) \mathrm{d} x,
\end{gathered}
$$
则
$\text{A.}$ $N < P < M$
$\text{B.}$ $M < P < N$
$\text{C.}$ ${N} < M < P$
$\text{D.}$ $P < M < 1$
设 $a_n=\frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \mathrm{~d} x$ ,则极限 $\lim _{n \rightarrow \infty} n a_n$ 等于
$\text{A.}$ $(1+e)^{\frac{3}{2}}+1$
$\text{B.}$ $\left(1+e^{-1}\right)^{\frac{3}{2}}-1$
$\text{C.}$ $\left(1+e^{-1}\right)^{\frac{3}{2}}+1$
$\text{D.}$ $(1+e)^{\frac{3}{2}}-1$