科数网
题号:8867    题型:单选题    来源:李艳芳考研数学预测试卷(数一)2023版
设 $a \neq b$, 函数 $f(x)=\left\{\begin{array}{ll}a, & 0 < x < \pi, \\ b, & -\pi < x < 0,\end{array}\right.$ 且其傅里叶级数展开式为 $\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+\right.$ $\left.b_n \sin n x\right)$, 则
$\text{A.}$ $\sum_{n=1}^{\infty} a_n$ 发散. $\text{B.}$ $\sum_{n=1}^{\infty} b_n$ 收敛. $\text{C.}$ $\sum_{n=1}^{\infty} a_n^2$ 发散. $\text{D.}$ $\sum_{n=1}^{\infty} b_n^2$ 收敛.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP