查看原题
已知函数 $f(x), g(x)$ 可导, 且 $f^{\prime}(x)>0, g^{\prime}(x) < 0$, 则
A. $\int_{-1}^0 f(x) g(x) \mathrm{d} x>\int_0^1 f(x) g(x) \mathrm{d} x$.     B. $\int_{-1}^0|f(x) g(x)| \mathrm{d} x>\int_0^1|f(x) g(x)| \mathrm{d} x$.     C. $\int_{-1}^0 f[g(x)] \mathrm{d} x>\int_0^1 f[g(x)] \mathrm{d} x$.     D. $\int_{-1}^0 f[f(x)] \mathrm{d} x>\int_0^1 g[g(x)] \mathrm{d} x$.         
不再提醒