一、单选题 (共 29 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $I_k=\int_0^{k \pi} \mathrm{e}^{x^2} \sin x \mathrm{~d} x(k=1,2,3)$, 则有
$\text{A.}$ $I_1 < I_2 < I_3$.
$\text{B.}$ $I_3 < I_2 < I_1$.
$\text{C.}$ $I_2 < I_3 < I_1$.
$\text{D.}$ $I_2 < I_1 < I_3$.
设函数 $f(x)$ 在 $(0,+\infty)$ 内可导, 则下列命题中, 正确的个数是
(1) 若 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$.
(2) 若 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(3) 若 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限.
(4) 若 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限.
$\text{A.}$ 0个
$\text{B.}$ 1个
$\text{C.}$ 2个
$\text{D.}$ 3个
设曲线 $y=f(x)$ 由 $\left\{\begin{array}{l}x=t|t|, \\ y=t^2 \mathrm{e}^{\frac{1}{3}}\end{array}\right.$ 确定, 则该曲线的渐近线的条数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设函数 $f(x)$ 在 $(0,+\infty)$ 上连续, $f(1)=1$, 且对任意正数 $a, b, \int_{\frac{1}{a+b}}^{\frac{1}{a}} f(x) \mathrm{d} x$ 的值仅与 $b$ 有关, 则下列说法中, 错误的是
$\text{A.}$ $f(x)>0$.
$\text{B.}$ $\lim _{x \rightarrow+\infty} f(x)=0$.
$\text{C.}$ $f(x)$ 在 $(0,+\infty)$ 上是单调函数.
$\text{D.}$ 曲线 $y=f(x)$ 在 $(0,+\infty)$ 上为凸曲线.
设 $f^{\prime}(x)$ 在 $x=a$ 处连续, 且 $\lim _{x \rightarrow a} \frac{\sin (x-a)}{f^{\prime}(x)}=-1$, 则
$\text{A.}$ $x=a$ 是 $f(x)$ 的极小值点.
$\text{B.}$ $x=a$ 是 $f(x)$ 的极大值点.
$\text{C.}$ $(a, f(a))$ 是曲线 $y=f(x)$ 的拐点.
$\text{D.}$ $f^{\prime}(x)$ 在 $x=a$ 的邻域内单调.
级数 $\sum_{n=2}^{\infty} \frac{1}{n^\alpha \ln ^\beta n}$ 收敛的充要条件是
$\text{A.}$ $\alpha>1$.
$\text{B.}$ $\alpha>1, \beta>1$.
$\text{C.}$ $\alpha \geqslant 1, \beta>1$.
$\text{D.}$ $\alpha>1$ 或 $\alpha=1, \beta>1$.
设曲线 $L: y=\ln x$, 则
$\text{A.}$ $L$ 在 $\left(\frac{\sqrt{2}}{2},-\frac{\ln 2}{2}\right)$ 点取得最小曲率半径 $\frac{3 \sqrt{3}}{2}$.
$\text{B.}$ $L$ 在 $\left(\frac{\sqrt{2}}{2},-\frac{\ln 2}{2}\right)$ 点取得最大曲率半径 $\frac{3 \sqrt{3}}{2}$.
$\text{C.}$ $L$ 在 $\left(\frac{\mathrm{e}}{2}, 1-\ln 2\right)$ 点取得最小曲率半径 $\frac{\sqrt{3}}{2}$.
$\text{D.}$ $L$ 在 $\left(\frac{\mathrm{e}}{2}, 1-\ln 2\right)$ 点取得最大曲率半径 $\frac{\sqrt{3}}{2}$.
设 $f(x)=\frac{\ln |x|}{|x-1|} \sin x$, 则 $f(x)$ 有
$\text{A.}$ 两个可去间断点.
$\text{B.}$ 两个无穷间断点.
$\text{C.}$ 一个可去间断点, 一个跳跃间断点.
$\text{D.}$ 一个可去间断点,一个无穷间断点.
设 $\lim _{x \rightarrow 1} \frac{f(x)}{m x}=1$, 则
$\text{A.}$ $f(1)=0$
$\text{B.}$ $\lim _{x \rightarrow 1} f(x)=0$
$\text{C.}$ $f^{\prime}(1)=1$
$\text{D.}$ $\lim _{x \rightarrow 1} f^{\prime}(x)=1$
已知数列 $\left\{x_n\right\}$, 其中 $-\frac{\pi}{2} \leq x_n \leq \frac{\pi}{2}$, 则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} \cos \left(\sin x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{B.}$ 当 $\lim _{n \rightarrow \infty} \sin \left(\cos x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{C.}$ 当 $\lim _{n \rightarrow \infty} \cos \left(\sin x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} \sin x_n$ 存在, $\lim _{n \rightarrow \infty} x_n$ 不一定存在
$\text{D.}$ $\lim _{n \rightarrow \infty} \sin \left(\cos x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} \cos x_n$ 存在, $\lim _{n \rightarrow \infty} x_n$ 不一定存在
$I_1=\int_0^1 \frac{x}{2(1+\cos x)} d x, I_2=\int_0^1 \frac{\ln 1+x}{1+\cos x} d x, I_3=\int_0^1 \frac{2 x}{1+\sin x} d x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$
$\text{B.}$ $I_2 < I_3 < I_1$
$\text{C.}$ $I_1 < I_3 < I_2$
$\text{D.}$ $I_2 < I_1 < I_3$
$x=0$ 是函数 $f(x)=\arctan \frac{1}{x}$ 的
$\text{A.}$ 可去间断点
$\text{B.}$ 跳跃间断点
$\text{C.}$ 连续点
$\text{D.}$ 无穷间断点
函数 $f(x)$ 在 $[a, b]$ 上连续是 $f(x)$ 在 $[a, b]$ 上可积的
$\text{A.}$ 充要条件
$\text{B.}$ 必要条件
$\text{C.}$ 充分条件
$\text{D.}$ 非必要非充分条件
下列反常积分发散的是
$\text{A.}$ $\int_1^{+\infty} \frac{1}{x^2} d x$
$\text{B.}$ $\int_0^1 \frac{x d x}{\sqrt{1-x^2}}$
$\text{C.}$ $\int_0^1 \frac{1}{\sqrt{x}} d x$
$\text{D.}$ $\int_1^{+\infty} \frac{1}{x \ln x} d x$
若函数 $f$ 在 $(-\infty,+\infty)$ 内 $f^{\prime \prime}(x)>0$, 且 $\lim _{x \rightarrow+\infty} f(x)=0$, 则在下列四项函数性质:
(1) $\lim _{x \rightarrow+\infty} f^{\prime}(x)=0$;
(2) $f^{\prime}(x) < 0$;
(3) $f(x)>0$;
(4) $\lim _{x \rightarrow-\infty} f(x)=+\infty$ 中
$\text{A.}$ $f$ 仅有第 (1) 项性质.
$\text{B.}$ $f$ 仅有第 (1), (2) 两项性质.
$\text{C.}$ $f$ 仅有第 (1), (2), (3) 三项性质.
$\text{D.}$ $f$ 具有全部四项性质.
如果 $f(x)$ 在 $x$ 处可微, 则 $\lim _{\Delta x \rightarrow 0} \frac{\Delta y-\mathrm{d} y}{\Delta x}$ 的值为
$\text{A.}$ 1
$\text{B.}$ 0
$\text{C.}$ -1
$\text{D.}$ 不确定
已知函数 $f(x)$ 可微, 则 $f(x)=$
$\text{A.}$ $\int \mathrm{d} f(x) \quad$
$\text{B.}$ $\mathrm{d}\left(\int f(x) \mathrm{d} x\right)$
$\text{C.}$ $\left(\int f(x) \mathrm{d} x\right)^{\prime}$
$\text{D.}$ $\int f^{\prime}(x) \mathrm{d} x$
已知 $\int_0^1\left(f(x)+f^{\prime}(x)\right) \mathrm{e}^x \mathrm{~d} x=1, f(1)=0$, 则 $f(0)=$
$\text{A.}$ 1
$\text{B.}$ 0
$\text{C.}$ -1
$\text{D.}$ 不确定