一、填空题 (共 110 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
计算行列式 $\left|\begin{array}{cccc}2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -6 & 4 & 3\end{array}\right|$.
设 $\boldsymbol{A}, \boldsymbol{B}$ 都是 $n$ 阶方阵, 且存在非零复数 $k$, 使得 $\boldsymbol{A B}=k \boldsymbol{A}+k \boldsymbol{B}$,
(1) 证明: $\boldsymbol{A B}=\boldsymbol{B A}$.
(2) 设 $k=1$, 当 $\boldsymbol{A}=\left(\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 2 & 2\end{array}\right)$ 时, 求 $\boldsymbol{B}$.
含参数 $a, b, c, d$ 的方程组如下
$$
\left\{\begin{array}{l}
x_1+x_2=a \\
x_2+x_3=b \\
x_3+x_4=c \\
x_4+x_1=d
\end{array},\right.
$$
当参数满足什么条件时, 该方程组有解.
在 3 维欧氏空间 $\mathbb{R}^3=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x, y, z \in \mathbb{R}\right\}$ (通常的内积)中建立了右手坐标系, 定义 旋转变换 $\rho$ : 旋转轴为起点在原点的向量 $(1,1,1)$, 旋转角为 $\frac{2 \pi}{3}$ (逆时针方向). 即 $\rho$ 把全体起 点在原点的向量绕轴转动 $\frac{2 \pi}{3}$.
(1) 求 $\rho$ 在 $\mathbb{R}^3$ 的标准基下的矩阵.
(2) 求 $\rho$ 的全部不变子空间.
设矩阵 $\boldsymbol{A}=\left(\begin{array}{lll}1 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & 1\end{array}\right)$, 其中 $a, b$ 为任意数, 求 $\boldsymbol{A}$ 的 Jordan 标准形.
设 $\boldsymbol{A}, \boldsymbol{B}$ 同为 $n$ 阶方阵.
(1) 证明: $\left(\begin{array}{cc}A B & A \\ O & O\end{array}\right)$ 与 $\left(\begin{array}{cc}O & A \\ O & B A\end{array}\right)$ 相似.
(2) 证明: $\boldsymbol{A B}$ 与 $\boldsymbol{B} \boldsymbol{A}$ 有相同的特征多项式.
线性空间 $E$ 上一个线性变换 $\varphi$ 称为半单的, 如果对 $\varphi$ 的每个不变子空间 $E_1 \subseteq E$, 都存在 $\varphi$ 的不变子空间 $E_2 \subseteq E$, 使得 $E=E_1 \oplus E_2$.
证明: 若 $\varphi$ 是线性空间 $E$ 上的半单变换, $E_1$ 是 $\varphi$ 的一个不变子空间, 则 $\varphi$ 限制在 $E_1$ 上也是 半单的.
设矩阵 $\boldsymbol{A}=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right)$, 则 $\boldsymbol{A}^4$ 的最大特征值为
5 阶行列式中,项 $a_{24} a_{31} a_{52} a_{13} a_{45}$ 前面的符号为
设 $D=\left|\begin{array}{cccc}1 & -1 & 3 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 3 & -1 & 4 \\ 2 & 5 & 3 & 1\end{array}\right|, A_{4 i}(i=1,2,3,4)$ 是 $D$ 的第 4 行元素的代数余子式,则 $A_{41}+2 A_{42}-A_{43}+2 A_{44}$ 等 于
设 $B=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3\end{array}\right) , A$ 为 $4 \times 3$ 矩阵,且 $R(A)=2$ ,则 $R(A B)=$
若向量组 $\alpha_1=(1,1,0), \alpha_2=(1,3,-1), \alpha_3=(5,3, t)$ 线性 相关,则 $t=$
设 $A$ 是 3 阶实的对称矩阵, $\alpha=\left(\begin{array}{c}m \\ -m \\ 1\end{array}\right)$ 是线性方程组 $A x=0$ 的解, $\beta=\left(\begin{array}{c}m \\ 1 \\ 1-m\end{array}\right)$ 是线性方程组 $(A+E) x=0$ 的 解,则常数 $m=$
设 $A$ 和 $B$ 是 3 阶方阵, $A$ 的 3 个特征值分别为 $-3,3,0$ , 若 $E+B=A B$ ,则行列式 $\left|B^{-1}+2 E\right|=$
设 $\boldsymbol{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1\end{array}\right]$, 则二次型 $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$ 的正惯性指数为
$\alpha=[0,-1,2]^T, \beta=[0,-1,1]^T, A=\alpha \beta^T$, 则 $A^4=$
行列式 $\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 63\end{array}\right|=$
线性方程组 $\left\{\begin{array}{r}x_1+x_2+x_3+x_4=1 \\ x_2-x_3+2 x_4=1 \\ 2 x_1+3 x_2+(a+2) x_3+4 x_4=b \\ 3 x_1+5 x_2+x_3+(a+8) x_4=5\end{array}\right.$ 无解的充要条件是
向量 $\gamma$ 在 $\alpha_1=[1,0,1]^T, \alpha_2=[0,1,-1]^T, \alpha_3=[1,2,0]^T$ 下的坐标是 $[5,7,-4]^T$, 则 在 $\beta_1=[1,0,1]^T, \beta_2=[-1,1,1]^T, \beta_3=[1,-2,-2]^T$ 下的坐标是
$f=x_1^2+x_2^2+5 x_3^2+2 a x_1 x_2-2 x_1 x_3+4 x_2 x_3$ 是正定二次型的充要条件是
设 $\boldsymbol{A}$ 为 2 阶矩阵, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 是矩阵 $\boldsymbol{A}$ 分别属于特征值 0,2 的特征向量, 则方程组 $\boldsymbol{A x}=\boldsymbol{\alpha}_2$ 的通解为
设矩阵 $\boldsymbol{A}=\left(\begin{array}{ccc}-1 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & a & 2\end{array}\right)$ 且 $\boldsymbol{A}$ 不可相似对角化, 则 $a=$
设 3 阶对称矩阵 $\boldsymbol{A}$ 的第一行元素为 $1,2,3$, 第一行元素的代数余子式为 $0,1,-1$, 则方程组 $\boldsymbol{A}^* \boldsymbol{x}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ 的解为
若二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+4 x_2^2+2 x_3^2+4 t x_1 x_2+2 t x_1 x_3+2 x_2 x_3$ 是正定的, 则 $t$ 的取值为
设 $A=\left(a_{i j}\right)$ 是 $n$ 阶可逆实矩阵, $n \geq 3$ 且 $n$ 为奇数, $A_{i j}$ 为 $a_{i j}$ 在行列式 $|A|$ 中的代数余子式, 若 $A_{i j}=2 a_{i j}, i, j=1,2, \cdots, n$, 则行列式 $|A|=$
多项式 $f(x)=2 x^4-3 x^3+2 x^2-1$ 在有理数域 $\mathbb{Q}$ 上的标准分解式为
设线性空间 $V$ 上的线性变换 $\sigma$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 $\left(\begin{array}{ccc}1 & 2 & 0 \\ 3 & 0 & -1 \\ 0 & 3 & 2\end{array}\right)$, 则 $\sigma$ 在基 $\varepsilon_1+\varepsilon_2+\varepsilon_3$, $\varepsilon_2+\varepsilon_3, \varepsilon_3$ 下的矩阵为
设 $\varepsilon_1, \varepsilon_2$ 是欧氏空间 $V$ 的一组标准正交基, $\alpha_1, \alpha_2 \in V$, 已知 $\left(\varepsilon_1, \alpha_1\right)=1,\left(\varepsilon_1, \alpha_2\right)=-1,\left(\varepsilon_2, \alpha_1\right)=2$, $\left(\varepsilon_2, \alpha_2\right)=1$, 则向量 $\alpha_1, \alpha_2$ 的夹角为
设矩阵 $A$ 的初等因子组为 $\lambda^2,(\lambda-1)^2,(\lambda-1)^2, \lambda+1,(\lambda+1)^3$, 则 $A$ 的最小多项式为
设 $\boldsymbol{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ 且 $|\boldsymbol{A}|=3, \boldsymbol{B}=\left(\begin{array}{lll}a_{13} & a_{12}+2 a_{11} & a_{11} \\ a_{23} & a_{22}+2 a_{21} & a_{21} \\ a_{33} & a_{32}+2 a_{31} & a_{31}\end{array}\right)$, 则 $\boldsymbol{B} \cdot \boldsymbol{A}=$
设方阵 $A$ 满足方程 $A^2-2 A-4 I=0$, 则 $(A-3 I)^{-1}=$
行列式 $\left|\begin{array}{ccc}2 & 3 & 1 \\ 1 & 1 & 0 \\ -2 & 4 & 1\end{array}\right|$ 中第 1 行元素的代数余子式之和为
设 4 阶方阵 $A=\left(\alpha_1, \alpha_2, \alpha_3, \alpha_4\right)$, 且 $|A|=3$, 方阵 $B=\left(\alpha_2, 2 \alpha_4, \alpha_3-3 \alpha_1, \alpha_1\right)$,
则 $|B|=$
若矩阵 $A=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 2\end{array}\right)$ 与矩阵 $B=\left(\begin{array}{lll}0 & & \\ & 3 & \\ & & y\end{array}\right)$ 相似, 则 $x=$ $y=$
已知三阶方阵 $A$ 的三个特征值为 $0,1,2$, 则行列式 $\left|A^T+I\right|=$
已知二次型 $f=x_1^2+x_2^2+2 x_3^2+2 k x_2 x_3$ 正定, 则 $k$ 的取值范围为
已知二阶方阵 $A$ 的特征值为 1 和 -1 , 对应的特征向量为 $\alpha_1=(1,1)^T$ 和 $\alpha_2=(0,1)^T$, 则 $A^{2017}=$
已知 $\lambda=0$ 是矩阵 $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & 5 & a \\ 2 & a+3 & 2\end{array}\right]$ 的特征值, $\boldsymbol{A}^*$ 是 $\boldsymbol{A}$ 的伴随矩阵, 则齐次方程组 $\boldsymbol{A}^* \boldsymbol{x}=$ 0 的通解是
行列式 $D=\left|\begin{array}{cccc}
1 & -1 & 1 & x-1 \\
1 & -1 & x+1 & -1 \\
1 & x-1 & 1 & -1 \\
x+1 & -1 & 1 & -1
\end{array}\right|$
设 $4 \times 4$ 阶矩阵 $\boldsymbol{A}=\left(\alpha, \gamma_2, \gamma_3, \gamma_4\right), B=\left(\beta, \gamma_2, \gamma_3, \gamma_4\right)$ ,其中 $\alpha, \beta, \gamma_2, \gamma_3, \gamma_4$ 均为 4 维列向量,且已知行列式 $|A|=4,|B|=1$, 则行列式 $|A+B|=$