不定积分选择题

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 17 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知 $F(x)$ 为 $f(x)$ 的一个原函数, 则 $\int x f^{\prime}(2 x) \mathrm{d} x=$
$\text{A.}$ $\frac{1}{4} x F^{\prime}(2 x)+\frac{1}{2} F(2 x)+C$. $\text{B.}$ $\frac{1}{4} x F^{\prime}(2 x)-\frac{1}{2} F(2 x)+C$. $\text{C.}$ $\frac{1}{2} x F^{\prime}(2 x)+\frac{1}{4} F(2 x)+C$. $\text{D.}$ $\frac{1}{2} x F^{\prime}(2 x)-\frac{1}{4} F(2 x)+C$.

以下说法正确的是( ).
$\text{A.}$ 如果函数 $f(x)$ 在区间 $[a, b]$ 上有定义,则 $f(x)$ 在区间 $[a, b]$ 上可积 $\text{B.}$ 如果 $f(x)$ 在区间 $[a, b]$ 上可积,则 $\Phi(x)=\int_a^x f(t) \mathrm{d} t$, $x \in[a, b]$ 可导 $\text{C.}$ 如果函数 $f(x)$ 在区间 $[a, b]$ 上连续, $c \in(a, b)$ ,则 $ \frac{\mathrm{d}}{\mathrm{d} x} \int_c^x f(t) \mathrm{d} t=f(x) $ $\text{D.}$ 如果 $f(x)$ 是定义在区间 $[-a, a](a>0)$ 上的奇函数,则 $ \int_{-a}^a f(t) \mathrm{d} t=0$

设 $f(x)=\frac{1}{1-x^2}$, 则 $f(x)$ 的一个原函数为
$\text{A.}$ $\arcsin x$ $\text{B.}$ $\arctan x$. $\text{C.}$ $\frac{1}{2} \ln \left|\frac{1-x}{1+x}\right|$ $\text{D.}$ $\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|$.

设 $I=\int \arctan x \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $x \arctan x-\ln \sqrt{x^2+1}+C$ $\text{B.}$ $x \arctan x-\ln \left|x^2+1\right|+C$ $\text{C.}$ $x \arctan x+\frac{1}{2}\left(x^2+1\right)+C$. $\text{D.}$ $\frac{1}{1+x^2}+C$.

设 $I=\int \frac{a+x}{\sqrt{a^2-x^2}} \mathrm{~d} x$, 则 $I=(\quad)$.
$\text{A.}$ $a \arcsin \frac{x}{a}+\sqrt{a^2-x^2}+C$. $\text{B.}$ $a \arcsin \frac{x}{a}-\sqrt{a^2-x^2}+C$. $\text{C.}$ $a \arcsin \frac{x}{a}-x \sqrt{a^2-x^2}+C$. $\text{D.}$ $\arcsin \frac{x}{a}-\sqrt{a^2-x^2}+C$.

设 $I=\int \frac{\arctan \sqrt{x}}{\sqrt{x}(1+x)} \mathrm{d} x$, 则 $I=$.
$\text{A.}$ $-(\arctan \sqrt{x})^2+C$. $\text{B.}$ $\arctan \sqrt{x}+C$ $\text{C.}$ $(\arctan \sqrt{x})^2+C$. $\text{D.}$ $-\sqrt{\arctan x}+C$.

设 $I=\int \frac{\mathrm{d} x}{\mathrm{e}^x+\mathrm{e}^{-x}}$, 则 $I=$.
$\text{A.}$ $\mathrm{e}^x-\mathrm{e}^{-x}+C$. $\text{B.}$ $\arctan \mathrm{e}^x+C$. $\text{C.}$ $\arctan \mathrm{e}^{-x}+C$. $\text{D.}$ $\mathrm{e}^x+\mathrm{e}^{-x}+C$.

设 $I=\int(2 x-3)^{10} \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $10(2 x-3)^9+C$. $\text{B.}$ $20(2 x-3)^9+C$. $\text{C.}$ $\frac{1}{22}(2 x-3)^{11}+C$. $\text{D.}$ $\frac{1}{11}(2 x-3)^{11}+C$.

设 $\int f(x) \mathrm{d} x=F(x)+C$, 则 $\int \frac{1}{x^2} f\left(\frac{2}{x}\right) \mathrm{d} x=$.
$\text{A.}$ $F\left(\frac{2}{x}\right)+C$. $\text{B.}$ $-F\left(\frac{2}{x}\right)+C$. $\text{C.}$ $-\frac{1}{2} F\left(\frac{2}{x}\right)+C$ $\text{D.}$ $2 F\left(\frac{2}{x}\right)+C$.

设 $I=\int \frac{\mathrm{d} x}{1+\sqrt{x}}$, 则 $I=$.
$\text{A.}$ $-2 \sqrt{x}+2 \ln (1+\sqrt{x})+C$ $\text{B.}$ $2 \sqrt{x}+2 \ln (1+\sqrt{x})+C$ $\text{C.}$ $2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$ $\text{D.}$ $-2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$.

设 $I=\int a^{b x} \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $\frac{1}{b} \cdot \frac{a^{b x}}{\ln a}+C$ $\text{B.}$ $\frac{1}{b} \cdot \ln a \cdot a^{b x}+C$. $\text{C.}$ $\frac{1}{\ln a} a^{b x}+C$. $\text{D.}$ $\frac{1}{b} \cdot a^{b x}+C$.

设 $I=\int \frac{x \mathrm{~d} x}{a+b x^2}$, 则 $I=$.
$\text{A.}$ $\frac{1}{2} \ln \left|a+b x^2\right|+C$. $\text{B.}$ $\frac{b}{2} \ln \left|a+b x^2\right|+C$. $\text{C.}$ $\frac{1}{b} \ln \left|a+b x^2\right|+C$. $\text{D.}$ $\frac{1}{2 b} \ln \left|a+b x^2\right|+C$.

设 $f(x)$ 是连续函数, $F(x)$ 是 $f(x)$ 的原函数,则
$\text{A.}$ 当 $f(x)$ 是奇函数时, $F(x)$ 必是偶函数 $\text{B.}$ 当 $f(x)$ 是偶函数时, $F(x)$ 必是奇函数 $\text{C.}$ 当 $f(x)$ 是是周期函数时, $F(x)$ 必是周期函数 $\text{D.}$ 当 $f(x)$ 是单调增函数时, $F(x)$ 必是单调增函数

若 $\int f(x) d x=F(x)+C$, 则 $\int f(2 x+3) d x=$
$\text{A.}$ $F(2 x+3)$ $\text{B.}$ $2 F(2 x+3)+\mathrm{C}$ $\text{C.}$ $\frac{1}{2} F(2 x+3)$ $\text{D.}$ $\frac{1}{2} F(2 x+3)+C$

若 $f(x)$ 的导函数是 $\sin x$, 则 $f(x)$ 有一个原函数为
$\text{A.}$ $1+\sin x$. $\text{B.}$ $1-\sin x$. $\text{C.}$ $1+\cos x$. $\text{D.}$ $1-\cos x$.

已知 $f^{\prime}(x)=2^x(x \in R)$, 则 $f(x)$ 在 $R$ 上的一个原函数为
$\text{A.}$ $\frac{2^x}{\ln 2}$ $\text{B.}$ $\frac{2^x}{\ln ^2 2}$ $\text{C.}$ $2^x \ln 2$ $\text{D.}$ $2^x$

已知 $f(x)=\max \left\{1, x^2\right\}$, 则 $\int f(x) d x=$
$\text{A.}$ $\begin{cases}\frac{x^3}{3}-\frac{2}{3}+C, & x < -1 \\ x+C, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, & x>1\end{cases}$ $\text{B.}$ $\left\{\begin{array}{cc}\frac{x^3}{3}+C, & x < -1 \\ x+C, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+C, & x>1\end{array}\right.$ $\text{C.}$ $\left\{\begin{array}{cc}\frac{x^3}{3}+C_1, & x < -1 \\ x+C_2, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+C_3, & x>1\end{array}\right.$ $\text{D.}$ $\begin{cases}\frac{x^3}{3}-\frac{4}{3}+C, & x < -1 \\ x+C, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, & x>1\end{cases}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。