一、单选题 (共 17 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知 $F(x)$ 为 $f(x)$ 的一个原函数, 则 $\int x f^{\prime}(2 x) \mathrm{d} x=$
$\text{A.}$ $\frac{1}{4} x F^{\prime}(2 x)+\frac{1}{2} F(2 x)+C$.
$\text{B.}$ $\frac{1}{4} x F^{\prime}(2 x)-\frac{1}{2} F(2 x)+C$.
$\text{C.}$ $\frac{1}{2} x F^{\prime}(2 x)+\frac{1}{4} F(2 x)+C$.
$\text{D.}$ $\frac{1}{2} x F^{\prime}(2 x)-\frac{1}{4} F(2 x)+C$.
以下说法正确的是( ).
$\text{A.}$ 如果函数 $f(x)$ 在区间 $[a, b]$ 上有定义,则 $f(x)$ 在区间 $[a, b]$ 上可积
$\text{B.}$ 如果 $f(x)$ 在区间 $[a, b]$ 上可积,则 $\Phi(x)=\int_a^x f(t) \mathrm{d} t$, $x \in[a, b]$ 可导
$\text{C.}$ 如果函数 $f(x)$ 在区间 $[a, b]$ 上连续, $c \in(a, b)$ ,则 $ \frac{\mathrm{d}}{\mathrm{d} x} \int_c^x f(t) \mathrm{d} t=f(x) $
$\text{D.}$ 如果 $f(x)$ 是定义在区间 $[-a, a](a>0)$ 上的奇函数,则 $ \int_{-a}^a f(t) \mathrm{d} t=0$
设 $f(x)=\frac{1}{1-x^2}$, 则 $f(x)$ 的一个原函数为
$\text{A.}$ $\arcsin x$
$\text{B.}$ $\arctan x$.
$\text{C.}$ $\frac{1}{2} \ln \left|\frac{1-x}{1+x}\right|$
$\text{D.}$ $\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|$.
设 $I=\int \arctan x \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $x \arctan x-\ln \sqrt{x^2+1}+C$
$\text{B.}$ $x \arctan x-\ln \left|x^2+1\right|+C$
$\text{C.}$ $x \arctan x+\frac{1}{2}\left(x^2+1\right)+C$.
$\text{D.}$ $\frac{1}{1+x^2}+C$.
设 $I=\int \frac{a+x}{\sqrt{a^2-x^2}} \mathrm{~d} x$, 则 $I=(\quad)$.
$\text{A.}$ $a \arcsin \frac{x}{a}+\sqrt{a^2-x^2}+C$.
$\text{B.}$ $a \arcsin \frac{x}{a}-\sqrt{a^2-x^2}+C$.
$\text{C.}$ $a \arcsin \frac{x}{a}-x \sqrt{a^2-x^2}+C$.
$\text{D.}$ $\arcsin \frac{x}{a}-\sqrt{a^2-x^2}+C$.
设 $I=\int \frac{\arctan \sqrt{x}}{\sqrt{x}(1+x)} \mathrm{d} x$, 则 $I=$.
$\text{A.}$ $-(\arctan \sqrt{x})^2+C$.
$\text{B.}$ $\arctan \sqrt{x}+C$
$\text{C.}$ $(\arctan \sqrt{x})^2+C$.
$\text{D.}$ $-\sqrt{\arctan x}+C$.
设 $I=\int \frac{\mathrm{d} x}{\mathrm{e}^x+\mathrm{e}^{-x}}$, 则 $I=$.
$\text{A.}$ $\mathrm{e}^x-\mathrm{e}^{-x}+C$.
$\text{B.}$ $\arctan \mathrm{e}^x+C$.
$\text{C.}$ $\arctan \mathrm{e}^{-x}+C$.
$\text{D.}$ $\mathrm{e}^x+\mathrm{e}^{-x}+C$.
设 $I=\int(2 x-3)^{10} \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $10(2 x-3)^9+C$.
$\text{B.}$ $20(2 x-3)^9+C$.
$\text{C.}$ $\frac{1}{22}(2 x-3)^{11}+C$.
$\text{D.}$ $\frac{1}{11}(2 x-3)^{11}+C$.
设 $\int f(x) \mathrm{d} x=F(x)+C$, 则 $\int \frac{1}{x^2} f\left(\frac{2}{x}\right) \mathrm{d} x=$.
$\text{A.}$ $F\left(\frac{2}{x}\right)+C$.
$\text{B.}$ $-F\left(\frac{2}{x}\right)+C$.
$\text{C.}$ $-\frac{1}{2} F\left(\frac{2}{x}\right)+C$
$\text{D.}$ $2 F\left(\frac{2}{x}\right)+C$.
设 $I=\int \frac{\mathrm{d} x}{1+\sqrt{x}}$, 则 $I=$.
$\text{A.}$ $-2 \sqrt{x}+2 \ln (1+\sqrt{x})+C$
$\text{B.}$ $2 \sqrt{x}+2 \ln (1+\sqrt{x})+C$
$\text{C.}$ $2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$
$\text{D.}$ $-2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$.
设 $I=\int a^{b x} \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $\frac{1}{b} \cdot \frac{a^{b x}}{\ln a}+C$
$\text{B.}$ $\frac{1}{b} \cdot \ln a \cdot a^{b x}+C$.
$\text{C.}$ $\frac{1}{\ln a} a^{b x}+C$.
$\text{D.}$ $\frac{1}{b} \cdot a^{b x}+C$.
设 $I=\int \frac{x \mathrm{~d} x}{a+b x^2}$, 则 $I=$.
$\text{A.}$ $\frac{1}{2} \ln \left|a+b x^2\right|+C$.
$\text{B.}$ $\frac{b}{2} \ln \left|a+b x^2\right|+C$.
$\text{C.}$ $\frac{1}{b} \ln \left|a+b x^2\right|+C$.
$\text{D.}$ $\frac{1}{2 b} \ln \left|a+b x^2\right|+C$.
设 $f(x)$ 是连续函数, $F(x)$ 是 $f(x)$ 的原函数,则
$\text{A.}$ 当 $f(x)$ 是奇函数时, $F(x)$ 必是偶函数
$\text{B.}$ 当 $f(x)$ 是偶函数时, $F(x)$ 必是奇函数
$\text{C.}$ 当 $f(x)$ 是是周期函数时, $F(x)$ 必是周期函数
$\text{D.}$ 当 $f(x)$ 是单调增函数时, $F(x)$ 必是单调增函数
若 $\int f(x) d x=F(x)+C$, 则 $\int f(2 x+3) d x=$
$\text{A.}$ $F(2 x+3)$
$\text{B.}$ $2 F(2 x+3)+\mathrm{C}$
$\text{C.}$ $\frac{1}{2} F(2 x+3)$
$\text{D.}$ $\frac{1}{2} F(2 x+3)+C$
若 $f(x)$ 的导函数是 $\sin x$, 则 $f(x)$ 有一个原函数为
$\text{A.}$ $1+\sin x$.
$\text{B.}$ $1-\sin x$.
$\text{C.}$ $1+\cos x$.
$\text{D.}$ $1-\cos x$.
已知 $f^{\prime}(x)=2^x(x \in R)$, 则 $f(x)$ 在 $R$ 上的一个原函数为
$\text{A.}$ $\frac{2^x}{\ln 2}$
$\text{B.}$ $\frac{2^x}{\ln ^2 2}$
$\text{C.}$ $2^x \ln 2$
$\text{D.}$ $2^x$
已知 $f(x)=\max \left\{1, x^2\right\}$, 则 $\int f(x) d x=$
$\text{A.}$ $\begin{cases}\frac{x^3}{3}-\frac{2}{3}+C, & x < -1 \\ x+C, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, & x>1\end{cases}$
$\text{B.}$ $\left\{\begin{array}{cc}\frac{x^3}{3}+C, & x < -1 \\ x+C, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+C, & x>1\end{array}\right.$
$\text{C.}$ $\left\{\begin{array}{cc}\frac{x^3}{3}+C_1, & x < -1 \\ x+C_2, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+C_3, & x>1\end{array}\right.$
$\text{D.}$ $\begin{cases}\frac{x^3}{3}-\frac{4}{3}+C, & x < -1 \\ x+C, & -1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, & x>1\end{cases}$