设 $I=\int \frac{a+x}{\sqrt{a^2-x^2}} \mathrm{~d} x$, 则 $I=(\quad)$.
$\text{A.}$ $a \arcsin \frac{x}{a}+\sqrt{a^2-x^2}+C$.
$\text{B.}$ $a \arcsin \frac{x}{a}-\sqrt{a^2-x^2}+C$.
$\text{C.}$ $a \arcsin \frac{x}{a}-x \sqrt{a^2-x^2}+C$.
$\text{D.}$ $\arcsin \frac{x}{a}-\sqrt{a^2-x^2}+C$.