试卷7

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 3 题 ),每题只有一个选项正确
已知 $\left\{a_n\right\}$ 为等差数列, $m, n, p, q \in \mathbf{N}^*$, 则 “ $m+n=p+q$ ” 是 “ $a_m+a_n=a_p+a_q$ ”的
$\text{A.}$ 充分不必要条件 $\text{B.}$ 必要不充分条件 $\text{C.}$ 充要条件 $\text{D.}$ 既不充分也不必要条件

设集合 $U=\{-1,0,1,2\}, A=\{-1,2\}$, 则 $C_U A=$
$\text{A.}$ $A=\{0\}$ $\text{B.}$ $A=\{1\}$ $\text{C.}$ $A=\{0,1\}$ $\text{D.}$ $\varnothing$

命题 “ $\exists x \in[2,+\infty), x^2 \leqslant 4$ ” 的否定形式为
$\text{A.}$ $\forall x \in[2,+\infty), x^2>4$ $\text{B.}$ $\forall x \in(-\infty, 2), x^2>4$ $\text{C.}$ $\forall x \in[2,+\infty), x^2 \leqslant 4$ $\text{D.}$ $\forall x \in(-\infty, 2), x^2 \leqslant 4$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。