一、单选题 (共 8 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设正值函数 $f(x, y, z)$ 与 $g(x, y, z)$ 在点 $(0,0,0)$ 处的各个偏导数均存在且连续, $f(0,0,0)=$ $g(0,0,0)=1, f(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $\boldsymbol{n}$ 的方向导数 $\left.\frac{\partial f}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=1, g(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $\boldsymbol{n}$ 的方向导数 $\left.\frac{\partial g}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=2$, 则 $\left.\frac{\partial\left(\frac{1}{f}+\frac{1}{g}\right)}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=$
$\text{A.}$ 1
$\text{B.}$ 3
$\text{C.}$ -1
$\text{D.}$ -3
设 $f(x, y)$ 为可微函数, $f_y^{\prime}(x, x+y)=2 y, f(x, x)=x^2$, 则 $f_x^{\prime}(x, y)=$
$\text{A.}$ $4 x$
$\text{B.}$ $4 x+2 y$
$\text{C.}$ $2 y$
$\text{D.}$ $4 x-2 y$
设函数 $f(x)$ 连续, 满足 $\int_0^1 f(x) \mathrm{d} x=0$. 若 $\int_0^1 \mathrm{e}^{1-x} f\left(x \mathrm{e}^{1-x}\right) \mathrm{d} x=1$, 则 $\int_0^1 x \mathrm{e}^{1-x} f\left(x \mathrm{e}^{1-x}\right) \mathrm{d} x$ $= $
$\text{A.}$ -1
$\text{B.}$ 0
$\text{C.}$ 1
$\text{D.}$ e
若二元函数 $f(x, y)$ 存在二阶连续偏导数, 且满足 $f(x, y)=-f(y, x)$, 则下列结论中, 错误的是
$\text{A.}$ $f_{11}^{\prime \prime}(x, y)=f_{22}^{\prime \prime}(x, y)$.
$\text{B.}$ $f_{11}^{\prime \prime}(x, y)=-f_{22}^{\prime \prime}(y, x)$.
$\text{C.}$ $f_{12}^{\prime \prime}(x, y)=f_{21}^{\prime \prime}(x, y)$.
$\text{D.}$ $f_{12}^{\prime \prime}(x, y)=-f_{21}^{\prime \prime}(y, x)$.
已知二元函数 $F(x, y)=f(x, y) \varphi(x, y)$, 其中 $\varphi(x, y)$ 在点 $(0,0)$ 处连续, 且 $f(0,0)=0$, $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f_x^{\prime}(x, y)=\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f_y^{\prime}(x, y)=0$, 则 $F(x, y)$ 在点 $(0,0)$ 处
$\text{A.}$ 不连续
$\text{B.}$ 连续, 但偏导数不存在
$\text{C.}$ 连续, 偏导数存在但不可微
$\text{D.}$ 可微
设 $f(x, y)$ 为可微函数, $f_y^{\prime}(x, x+y)=2 y, f(x, x)=x^2$, 则 $f_x^{\prime}(x, y)=$.
$\text{A.}$ $4 x$
$\text{B.}$ $4 x+2 y$
$\text{C.}$ $2 y$
$\text{D.}$ $4 x-2 y$
设 $f(x, y)=\left\{\begin{array}{cl}\frac{x^2 y}{x^2+y^2}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.$ 则 $f(x, y)$ 在点 $(0,0)$ 处
$\text{A.}$ 可微, 且取极值
$\text{B.}$ 可微但不取极值
$\text{C.}$ 不可微,但取极值
$\text{D.}$ 不可微,也不取极值
若函数 $z=f(x, y)$ 在点 $(1,1)$ 处连续, 且 $\lim _{\substack{x \rightarrow 1 \\ y=1}} \frac{f(x, y)-2 x+4 y-1}{\sqrt{x^2+y^2-2 x-2 y+3}-1}=2$, 则
$\text{A.}$ $f(x, y)$ 在点 $(1,1)$ 处不存在偏导数.
$\text{B.}$ $f(x, y)$ 在点 $(1,1)$ 处存在偏导数但不可微.
$\text{C.}$ $f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\left.\mathrm{d} z\right|_{(1.1)}=2 \mathrm{~d} x-4 \mathrm{~d} y$.
$\text{D.}$ $f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\left.\mathrm{d} z\right|_{(1.1)}=-2 \mathrm{~d} x+4 \mathrm{~d} y$.
二、填空题 (共 8 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $z=\left(e^{x y}+x\right)^x,\left.\mathrm{~d} z\right|_{(1,0)}=$
已知 $f(x, y)=x+(y-1) \sin \sqrt{\frac{x}{y}}$, 则 $f_x(x, 1)=$
$\lim _{(x, y) \rightarrow(0,0)} \frac{\arctan \left(x^3+y^3\right)}{x^2+y^2}=$
微分方程 $y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 x}$ 的通解为
已知 $f(x, y)=x+(y-1) \sin \sqrt{\frac{x}{y}}$, 则 $f_x(x, 1)=$
设 $z=x y e^{x^2+y^2}$, 求 $z_{x y}^{\prime \prime}$ 。
求函数 $u=x^2+y^2-8 x+4 y$ 在 $D: x^2+y^2 \leq 9$ 上的最值。
设 $\mathrm{u}=x^2+x y^2+y^3$. 则 $\frac{\partial^2 u}{\partial x \partial y}=$
三、解答题 ( 共 6 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $u=f(x y, g(x))$, 其中 $f$ 具有二阶连续偏导数, $g(x)$ 可导且在 $x=1$ 处取到极值
$$
g(1)=1 \text {, 求 }\left.\frac{\partial^2 u}{\partial x \partial y}\right|_{(1.1)}
$$
已知函数 $z=z(x, y)$ 由方程 $x y=e^{x z}-2 z$ 确定, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.
设 $z=x^2 y+\ln (x+y)+\tan 2$, 求 $\mathrm{d} z$
设 $u=f(4 x y, 2 x-3 y)$, 其中 $f$ 一阶偏导连续, 求 $\frac{\partial u}{\partial y}$
设 $z=z(x, y)$ 由 $x^2+y^2+z^2-x y z=100$ 确定.求 $\frac{\partial z}{\partial y}$
求函数 $f(x, y)=x^3-y^3+3 x^2+3 y^2-9 x$ 的极值