设正值函数 $f(x, y, z)$ 与 $g(x, y, z)$ 在点 $(0,0,0)$ 处的各个偏导数均存在且连续, $f(0,0,0)=$ $g(0,0,0)=1, f(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $\boldsymbol{n}$ 的方向导数 $\left.\frac{\partial f}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=1, g(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $\boldsymbol{n}$ 的方向导数 $\left.\frac{\partial g}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=2$, 则 $\left.\frac{\partial\left(\frac{1}{f}+\frac{1}{g}\right)}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=$
A. 1
B. 3
C. -1
D. -3